# Towards a stable trace formula for metaplectic groups and its applications

Wen-Wei Li

Institut de Mathématiques de Jussieu

June 30, 2011 BIRS Workshop on L-packets

#### References

- Transfert d'intégrales orbitales pour le groupe métaplectique (Compositio Math. 147 / arXiv)
- Le lemme fondamental pondéré pour le groupe métaplectique (arXiv)
- La formule des traces pour les revêtements de groupes réductifs connexes. I.
  - Le développement géométrique fin (arXiv)
- La formule des traces pour les revêtements de groupes réductifs connexes. II.

  Analyse harmanique la sale (in preparation)
  - Analyse harmonique locale (in preparation)
- La formule des traces pour les revêtements de groupes réductifs connexes. III.
  - Le développement spectral fin (in preparation)

### The local case

F: local field of characteristic  $\neq 2$ .  $\psi: F \to \mathbb{C}^{\times}$  nontrivial unitary character.

- W: finite-dimensional F-vector space,
- $\langle, \rangle$ : symplectic form on W.

Let  $\mathrm{Sp}(W)$  be the symplectic group. If dim W=2n, we sometimes write  $\mathrm{Sp}(2n)$  since  $(W,\langle,\rangle)$  is unique up to isomorphism.

 We can construct the metaplectic covering, which is a central extension

$$1 o \{1, \epsilon\} o \widetilde{\mathsf{Sp}}(W) \overset{\mathbf{p}}{ o} \mathsf{Sp}(W) o 1.$$

The covering **p** is nontrivial and nonalgebraic (i.e. does not come from an isogeny of algebraic groups) when  $F \neq \mathbf{C}$ .  $\widetilde{\mathsf{Sp}}(W)$  will also be denoted by  $\widetilde{\mathsf{Sp}}(2n)$ ,  $\widetilde{\mathsf{Sp}}(2n,F)$ ,  $\widetilde{\mathsf{Sp}}(W,F)$ .

- The Weil representation of  $\widetilde{\mathsf{Sp}}(W)$  :  $\omega_{\psi} = \omega_{\psi}^+ \oplus \omega_{\psi}^-$ , where  $\omega_{\psi}^\pm$  are unitary irreps.
- If res.char(F) > 2 and  $L \subset W$  is a self-dual lattice w.r.t.  $\psi \circ \langle, \rangle$ , then  $K := \operatorname{Stab}(L)$  is hyperspecial and  $\mathbf{p}$  is canonically split over K.

# Genuine representations

- It suffices to study the representations  $\pi$  of  $\operatorname{Sp}(W)$  which are genuine, i.e.  $\pi(\epsilon)=-\mathrm{id}$ . Examples:  $\omega_{\psi}^{\pm}$ .
- Test functions: it suffices to consider  $\pi(f)$  with antigenuine  $f \in C_c^{\infty}(\widetilde{\operatorname{Sp}}(W))$ , i.e.  $f(\epsilon \cdot) = -f(\cdot)$ .

#### The adélic case

F a number field,  $\mathbb{A}$  its ring of adèles,  $\psi: \mathbb{A}/F \to \mathbb{C}^{\times}$  a nontrivial unitary character.

- Construct the adélic  $\widetilde{Sp}(W, \mathbb{A})$  and  $\omega_{\psi}$  as before.
- The same notions of genuine/antigenuine objects.
- We can show that

$$\widetilde{Sp}(W, \mathbb{A}) = \left(\prod_{v} \widetilde{Sp}(W, F_{v})\right) / \mathbf{N},$$

$$\mathbf{N} := \left\{ (\epsilon_{\nu})_{\nu} \in \bigoplus_{\nu} \{\pm 1\} : \prod_{\nu} \epsilon_{\nu} = 1 \right\}.$$

### Some problems

- Study of genuine representations on  $\widetilde{Sp}(W)$ ; Howe correspondence.
- Endoscopy of the nonalgebraic group  $\widetilde{Sp}(W)$ ?
- Invariant trace formula for  $Sp(W, \mathbb{A})$ ?
- Stable trace formula for  $\widetilde{Sp}(W, \mathbb{A})$ ?

It's possible to pursue the invariant trace formula for more general coverings of connected reductive algebraic groups. Cf. [Mezo].

# Coverings of connected reductive groups

F: local field, G: connected reductive F-group.

- G = Sp(2n): A. Weil (1964) ⇒ representation-theoretic interpretation of Siegel modular forms of half-integral weight.
- G = SL(2) or GL(2): Shimura (1973), Kubota.
- G split, simple and simply connected: R. Steinberg (1962), H. Matsumoto (1969) constructed the *universal central extension* of G(F). Related to algebraic K-theory.
- $G = GL_n$ : metaplectic correspondence (Flicker, Kazhdan, Patterson,...,  $\geq 1980$ ).
- G arbitrary: Deligne and Brylinski (2001) classified their K<sub>2</sub>-extensions.

There are also adélic constructions.

# From the viewpoint of trace formula...

Consider the most general case of topological central extensions

$$1 o \mathbf{N} o \tilde{G} o G(k) o 1$$

#### where

- F: global or local field of char 0,
- G: connected reductive over F.
- k = F (local) or k = A (global),
- N: finite abelian group.

We may assume  $\mathbf{N} = \mu_m := \{z \in \mathbb{C}^{\times} : z^m = 1\}.$ 

Genuine representations:  $\pi(\epsilon) = \epsilon \cdot id$ ,  $\forall \epsilon \in \mu_m$ .

Antigenuine functions:  $f(\epsilon \cdot) = \epsilon^{-1} f(\cdot)$ ,  $\forall \epsilon \in \mu_m$ .

The class of such extensions should be:

- stable under push-forward  $\mu_m \to \mu_{m'}$ ;
- stable under passage to Levi subgroups (philosophy of cusp forms);
- when F is global,
  - $\exists$  splitting over G(F) ( $\Rightarrow$  spectral decomposition, see [MW]),
  - $\exists$  splittings over hyperspecial subgroups  $G(\mathfrak{o}_v)$  at almost all v, here we fix an integral model of G;
  - (continued) the corresponding spherical Hecke algebras must be commutative (⇒ ⊗-decomposition of admissible irreps)

Good splittings over unipotent subgroups: automatic.  $\Rightarrow$  notions of constant terms and Jacquet functors.

These conditions are satisfied by the  $K_2$ -extensions of Brylinski-Deligne.

### Statement

- $\mathbf{p}: \tilde{\mathcal{G}} \to \mathcal{G}(\mathbb{A})$  be a covering,  $\operatorname{\mathsf{Ker}}(\mathbf{p}) = \mu_m$ .
  - $\tilde{G}^1 := \operatorname{Ker}(H_G \circ \mathbf{p})$  where  $H_G : G(\mathbb{A}) \to \mathfrak{a}_G$  is the Harish-Chandra homomorphism.
  - R: right regular representation of  $\tilde{G}$  on  $L^2(G(F)\backslash \tilde{G}^1)$ ,
  - $f \in C_c^{\infty}(\tilde{G})$  antigenuine,
  - K the kernel of R(f),  $k(x) := K(\tilde{x}, \tilde{x})$  for  $x \in G(\mathbb{A})$ ,  $\tilde{x} \in \mathbf{p}^{-1}(x)$ ,
  - for any parabolic P = MU,  $R_P$  the right regular representation on  $L^2(U(\mathbb{A})M(F)\backslash \tilde{G}^1)$  and  $K_P$  its kernel.

Fix minimal Levi  $M_0$  and maximal compact  $K \subset G(\mathbb{A})$  in good relative position. Set  $\tilde{K} := \mathbf{p}^{-1}(K)$ .

Fix  $P_0 \in \mathcal{P}(M_0)$ . For  $T \in \mathfrak{a}_0$ , define the truncated kernel à la Arthur

$$k^T(x) := \sum_{P\supset P_0} (-1)^{\dim A_P/A_G}$$

$$\sum_{\delta \in P(F) \setminus G(F)} K_P(\delta \tilde{x}, \delta \tilde{x}) \hat{\tau}_P(H_P(\delta x) - T).$$

#### **Theorem**

For T highly regular,  $k^T(x)$  is integrable over  $G(F) \setminus \tilde{G}^1$ . There is an identity of absolutely convergent integrals

$$\sum_{\mathfrak{o}} J_{\mathfrak{o}}^{T}(f) = J^{T}(f) = \sum_{\chi} J_{\chi}^{T}(f).$$

Everything in sight is polynomial in T.

- Spectral side:  $\chi$  ranges over cuspidal data  $(M, \sigma)$ , where  $M \supset M_0$  is a Levi subgroup,  $\sigma$  is a cuspidal automorphic representation of  $\tilde{M}$  inside  $L^2(M(F)\backslash \tilde{M}^1)$ .
- Geometric side: o ranges over semisimple classes in G(F). The unipotent term  $J_{\text{unip}}^T(f)$  corresponds to 1.

### About the proof

- Combinatorics: the same as the case of reductive groups (Arthur),
- Spectral decomposition: included in [MW],
- Geometric side: the same as in the case of reductive groups we only look at conjugacy classes in G(F).

# The problem of refinement

Let  $T_0 \in \mathfrak{a}_0$  be the canonical element (depending on K) defined by Arthur. Then  $J(f) := J^{T_0}(f)$ ,  $J_{\chi}(f) := J^{T_0}_{\chi}(f)$ ,  $J_{\mathfrak{o}}(f) := J^{T_0}_{\mathfrak{o}}(f)$  are independent of  $P_0$ . The problem is to find explicit formulas for them.

#### Desiderata

Express  $J_{\chi}(f)$ ,  $J_{o}(f)$  in terms of weighted orbital integrals and weighted characters (local objects), with global coefficients.

# Descend to the unipotent case

Idea: get rid of the covering.

For  $x,y\in G(\mathbb{A})$  with liftings  $\tilde{x},\tilde{y}\in \tilde{G}$ , set

$$[x,y] := \tilde{x}^{-1} \tilde{y}^{-1} \tilde{x} \tilde{y}.$$

Let  $\sigma \in G(F)$  be semisimple,  $G_{\sigma} := Z_{G}(\sigma)^{\circ}$ . Then  $[\cdot, \sigma]$  defines a homomorphism  $G_{\sigma}(\mathbb{A}) \to \mu_{m}$ .

#### Principle

Let  $\mathfrak{o}$  be the G(F)-orbit containing  $\sigma$ . Reduce  $J_{\mathfrak{o}}^{\tilde{G}}(f)$  to  $J_{\text{unip}}^{G_{\sigma},[\cdot,\sigma]}$ , the unipotent term of the trace formula of  $G_{\sigma}$  twisted by the character  $[\cdot,\sigma]$ . (More precisely, one must consider some Levi subgroups of  $G_{\sigma}$ ).

Remark: we have Jordan decomposition on coverings.

# Example: descent of orbital integrals

The same formalism about  $[\cdot, \sigma]$  applies to the local case. Let F be a local field,  $\mathbf{p}: \tilde{G} \to G(F)$  a covering and  $f \in C_c^{\infty}(\tilde{G})$  antigenuine.

#### **Theorem**

 $\exists f^{\flat} \in C_c^{\infty}(\mathfrak{g}_{\sigma}(F))$  such that  $\forall \tilde{\gamma} = \sigma \exp(X)$  with  $X \in \mathfrak{g}_{\sigma}(F)$  sufficiently close to 0, we have

$$|D^{G}(\gamma)|^{\frac{1}{2}}O_{\tilde{\gamma}}^{\tilde{G}}(f)=|D^{G_{\sigma}}(X)|^{\frac{1}{2}}O_{X}^{G_{\sigma},[\cdot,\sigma]}(f^{\flat})$$

where  $D^G$  and  $D^{G_{\sigma}}$  are the Weyl discriminants on G and  $\mathfrak{g}_{\sigma}$ , respectively.

It's tempting to remove  $[\cdot, \sigma]$  and replace  $G_{\sigma}(F)$  by  $\text{Ker}([\cdot, \sigma])|_{G_{\sigma}(F)}$ . However the latter group is less manageable.

# Basic ideas for the refined geometric expansion

- **1** Reduce to the study of  $J_{\text{unip}}^{G_{\sigma},[\cdot,\sigma]}(f)$ .
- ② Express  $J_{\text{unip}}^{G_{\sigma,[\cdot,\sigma]}}(f)$  in terms of weighted unipotent orbital integrals twisted by  $[\cdot,\sigma]$  (need to adapt Arthur's arguments).
- **3** Define weighted orbital integrals on  $\tilde{G}$  and deduce analogous descent formulas.
- **①** Compare the descent formulas to express  $\sum_{\mathfrak{o}} J_{\mathfrak{o}}(f)$  in terms of weighted orbital integrals on  $\tilde{G}$ .

Result: expressed in terms of good weighted orbital integrals  $J_{\tilde{M}_S}(\tilde{\gamma}_S, f_S)$ , where

- S: a finite set of places containing the archimedean ones, depending on Supp(f);
- $\tilde{M}_S := \mathbf{p}^{-1}(M(F_S));$
- $f = f_S f_{K^S}$ , where  $f_{K^S}$  is the unit in the antigenuine spherical Hecke algebra;
- $\tilde{\gamma}_S$ : conjugacy class in  $\tilde{M}_S$  which is good, i.e.  $\tilde{x}\tilde{\gamma}_S = \tilde{\gamma}_S\tilde{x}$  iff  $x\gamma_S = \gamma_S x$ , where  $\mathbf{p}(\tilde{*}) = *$ .

The definition of weighted orbital integrals is analogous to Arthur's: Langlands' geometric argument is applied after descent, thus the covering creates no difficulty.

We have:

$$J(f) = \sum_{M \in \mathcal{L}(M_0)} \frac{|W_0^M|}{|W_0^G|} \sum_{\substack{\gamma \in (M(F))_{M,S}^{K,good} \\ \gamma \leadsto \widetilde{\gamma_S}}} a^{\widetilde{M}}(S, \widetilde{\gamma_S}) J_{\widetilde{M}_S}(\widetilde{\gamma_S}, f).$$

- S: depending on Supp(f).
- $(M(F))_{M,S}$ : the set of (M,S)-equivalence classes defined by Arthur.
- $(\cdots)_{M,S}^{K,good}$ : the classes  $\gamma$  admitting a representative whose components outside S are in  $K^S$ , and whose component  $\widetilde{\gamma_S}$  in  $\widetilde{M}_S$  is good (using  $\mathbf{p}^{-1}(M(F_S) \times K^S) = \tilde{M}_S \times K^S$ ).
- The correspondence  $\gamma \leadsto \widetilde{\gamma_S}$ : described as above.

# One difficulty

- In the course of proof, one must show that  $a^{\tilde{M}}(S, \dot{\widetilde{\gamma_S}})J_{\tilde{M}_S}(\dot{\widetilde{\gamma_S}}, f)$  behaves well with respect to the correspondence  $\gamma \leadsto \widetilde{\gamma_S}$ .
- Unlike the case treated by Arthur, the character  $[\cdot,\sigma]$  intervenes and we need a somewhat technical result of "transport of structure" for  $a^{\tilde{M}}(S,\widehat{\gamma_S})$  and  $J_{\tilde{M}_S}(\widehat{\gamma_S},f)$ .

# The refined spectral side

Suppose f to be  $\tilde{K}$ -finite from now on. Then

$$\begin{split} J_{\chi}(f) &= \sum_{M \in \mathcal{L}(M_0)} \sum_{\pi \in \Pi(\tilde{M}^1)} \sum_{L \in \mathcal{L}(M)} \sum_{s \in W^L(M)_{\text{reg}}} \frac{|W_0^M|}{|W_0^G|} \cdot \\ &\cdot |\det(s - 1|\mathfrak{a}_M^L)|^{-1} \int_{i(\mathfrak{a}_L^G)^*} \operatorname{tr}(\mathcal{M}_L(\tilde{P}, \lambda) M_{P|P}(s, 0) \mathcal{I}_{\tilde{P}}(\lambda, f)_{\chi, \pi}) d\lambda. \end{split}$$

- $\Pi(\tilde{M}^1)$ : the set of unitary irreps of  $\tilde{M}^1$  up to equivalence,
- $P \in \mathcal{P}(M)$  arbitrary,
- $M_{P|P}(s,0)$ : global intertwining operators,
- $\mathcal{M}_L(\tilde{P}, \lambda)$ : an operator defined by a (G, L)-family arising from intertwining operators,
- $\mathcal{I}_{\tilde{p}}(\cdots)$ : unitary parabolic induction.

### Local ingredients of the proof

#### Mostly Harish-Chandra's theory:

- local intertwining operators,
- *c*-functions,  $\mu$ -functions,
- Plancherel formula,
- normalization of intertwining operators:
  - $\bullet$  Archimedean case: juggling with  $\Gamma\text{-functions},$
  - non-archimedean case: adapt Langlands' proof,
  - "unramified" case: need some theory of unramified genuine principal series, cf. [McNamara].

### Global ingredients of the proof

In view of [MW], one can simply copy Arthur's arguments.

# The next steps

- Opening and study the weighted characters for coverings.
- Express the spectral side in terms of weighted characters.
- ① The invariant trace formula: need the trace Paley-Wiener theorem for  $\tilde{K}_{\infty}$ -finite functions?
- To complete the induction step defining the invariant trace formula, Arthur used a generalization of Kazhdan's "Theorem 0" proved using global arguments, which becomes problematic even for the coverings constructed by Steinberg (weak approximation of good elements might fail). ← Bypass this problem by establishing the invariant local trace formula for coverings!

Remark: No difficulty in the case  $\widetilde{G} = \widetilde{\mathsf{Sp}}(W)!$ 

Let's come back to  $\mathbf{p}: \operatorname{Sp}(W) \to \operatorname{Sp}(W)$  with  $\dim_F W = 2n$ , and F: local field of characteristic 0. Let  $\operatorname{SO}(2n+1)$  denote the *split* odd orthogonal group of rank n.

Idea: the genuine representation theory of  $\widetilde{\mathrm{Sp}}(W)$  is closely related to  $\mathrm{SO}(2n+1)$ .

#### **Evidences**

- Prior works on Howe correspondence for the pair (Sp(2n), O(V, q)) where dim V = 2n + 1.
- Savin's work on the antigenuine spherical Hecke algebra of Sp(W) when char(F) > 2: it's isomorphic to the Hecke algebra of SO(2n+1).

# The dual group

Set 
$$G := \operatorname{\mathsf{Sp}}(W)$$
 and  $\widetilde{G} := \widetilde{\operatorname{\mathsf{Sp}}}(W)$ . Define

$$\hat{\tilde{G}}:=\mathsf{Sp}(2n,\mathbb{C})$$

with trivial Galois action. That is,  $\tilde{G}$  and SO(2n+1) have the same dual group. But what's the difference?

#### Rule

We should replace  $Z_{\hat{G}} = Z_{\hat{G}}^{\Gamma}$  by its identity component, i.e. the trivial group.

As a result, the endoscopy groups of  $\tilde{G}$  are different from those of SO(2n+1). The study of weighted fundamental lemma will give further evidences.

# Elliptic endoscopic data

Given the definitions above, one can imitate Langlands' definition to get the elliptic endoscopic data. However it's more convenient to define them directly.

#### Definition

The elliptic endoscopic data of  $\tilde{G}$  are the pairs (n',n'') with  $n',n''\in\mathbb{Z}_{\geq 0}$  such that n'+n''=n. To a pair (n',n''), the associated endoscopic group is

$$H := SO(2n' + 1) \times SO(2n'' + 1).$$

Remark A. Unlike the case of SO(2n+1), there is no symmetry  $(n', n'') \leftrightarrow (n'', n')$ .

Remark B. Renard's formalism:  $H := \widetilde{Sp}(2n') \times \widetilde{Sp}(2n'')$ .

# Correspondence of semisimple conjugacy classes

Fix (n', n'') and H as above. Let  $\gamma = (\gamma', \gamma'') \in H(F)$  be semisimple such that  $\gamma'$  (resp.  $\gamma''$ ) as an element in GL(2n'+1) (resp. GL(2n''+1)) has eigenvalues

$$a'_1, a'_2, \ldots, a'_{n'}, 1, {a'_{n'}}^{-1}, \ldots, {a'_1}^{-1}$$

.

(resp. 
$$a_1'', a_2'', \ldots, a_{n''}'', 1, {a_{n''}''}^{-1}, \ldots, a_1''^{-1}$$
).

We say  $\delta \in G(F)$  corresponds to  $\gamma$ , written  $\gamma \leftrightarrow \delta$ , if  $\delta$  is semisimple with eigenvalues

$$a'_1, a'_2, \dots, a'_{n'}, {a'_{n'}}^{-1}, \dots, {a'_1}^{-1}, \dots, a'_1$$
,  $-a''_1, -a''_2, \dots, -a'''_{n''}, -a'''_{n''}, \dots, -a''_1$ .

This defines a correspondence of semisimple geometric (=stable for G) conjugacy classes. In order to lift this to  $\tilde{G}$ , we need to distinguish elements in the fibers of  $\mathbf{p}$ .

### Definition (J. Adams, 1998)

Let  $\tilde{x}, \tilde{y} \in \tilde{G}$  with semisimple regular images  $x, y \in G(F)$ . They are stably conjugate if

- x, y are stably conjugate,
- $\bullet \ (\operatorname{tr}(\omega_\psi^+) \operatorname{tr}(\omega_\psi^-))(\tilde{\mathbf{x}}) = (\operatorname{tr}(\omega_\psi^+) \operatorname{tr}(\omega_\psi^-))(\tilde{\mathbf{y}}).$

Recall: the characters  $\operatorname{tr}(\omega_{\psi}^{\pm})$  are smooth on the set of regular semisimple elements (Harish-Chandra / Maktouf).

#### Transfer factors

Let  $\gamma = (\gamma', \gamma'') \in H(F)$ ,  $\delta \in G(F)$  be semisimple regular such that  $\gamma \leftrightarrow \delta$ . Take  $\tilde{\delta} \in \mathbf{p}^{-1}(\delta)$ . Set

$$\Delta(\gamma, \tilde{\delta}) = \Delta'(\tilde{\delta}')\Delta''(\tilde{\delta}'')\Delta_0(\delta', \delta'').$$

Definition de  $\Delta', \Delta''$ . We decompose  $W = W' \oplus W''$  according to the eigenvalues coming from  $\gamma'$  and  $\gamma''$ , and  $\delta = (\delta', \delta'')$  accordingly (use the regularity of  $\delta$ ).

$$(\widetilde{\delta}',\widetilde{\delta}'') \in \qquad \widetilde{\mathsf{Sp}}(W') \times \widetilde{\mathsf{Sp}}(W'') \longrightarrow \widetilde{\mathsf{Sp}}(W) \ .$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

 $(\tilde{\delta}', \tilde{\delta}'')$  is not unique, however the product  $\Delta'(\tilde{\delta}')\Delta''(\tilde{\delta}'')$  is. We set

$$\Delta'( ilde{\delta}') := rac{(\mathsf{tr}(\omega_\psi^+) - \mathsf{tr}(\omega_\psi^-))(\delta')}{|(\mathsf{tr}(\omega_\psi^+) - \mathsf{tr}(\omega_\psi^-))( ilde{\delta}')|}, \ \Delta'( ilde{\delta}'') := rac{(\mathsf{tr}(\omega_\psi^+) + \mathsf{tr}(\omega_\psi^-))( ilde{\delta}'')}{|(\mathsf{tr}(\omega_\psi^+) + \mathsf{tr}(\omega_\psi^-))( ilde{\delta}'')|},$$

The Weil representations are taken w.r.t. the spaces  $(W', \langle , \rangle)$ ,  $(W'', \langle , \rangle)$  respectively.

Definition of  $\Delta_0(\delta', \delta'')$ . It is defined using linear algebra and elementary algebraic number theory. Its definition relies on the parametrization of semisimple classes.

- These factors satisfy the properties needed for stabilization: cocycle condition, parabolic descent, product formula, normalization in the unramified case, etc.
- They also satisfy a curious symmetry condition:

$$\Delta_{(n',n'')}((\gamma',\gamma''),\tilde{\delta}) = \Delta_{(n'',n')}((\gamma'',\gamma'),-\tilde{\delta})$$

where the canonical element  $-\tilde{\delta} \in \mathbf{p}^{-1}(-\delta)$  is definable only after pushing-forward by  $\mu_2 \hookrightarrow \mu_8$ .

#### **Transfer**

Fix (n', n'') and the endoscopic group H. Let  $J_{\tilde{G}}(\cdots)$  (resp.  $J_H^{\rm st}(\cdots)$ ) be the orbital integrals on  $\tilde{G}$  (resp. stable orbital integrals on H) normalized by Weyl discriminants.

#### **Theorem**

 $\forall$  antigenuine  $f \in C_c^{\infty}(\tilde{G})$ ,  $\exists f^H \in C_c^{\infty}(H(F))$  such that

$$\sum_{\delta:\delta\leftrightarrow\gamma}\Delta(\gamma,\tilde{\delta})J_{\tilde{G}}(\tilde{\delta},f)=J_{H}^{st}(\gamma,f^{H})$$

for all semisimple G-regular  $\gamma \in H(F)$ . Here  $\tilde{\delta} \in \mathbf{p}^{-1}(\delta)$  is arbitrary.

Remark. If  $\delta \leftrightarrow \gamma$ , the connected centralizers  $G_{\delta}$ ,  $H_{\gamma}$  are isomorphic and we use corresponding Haar measures.

### Fundamental lemma for units

Suppose res.char(F) =  $p \gg 0$  w.r.t. n and that  $\psi : F \to \mathbb{C}^{\times}$  is of conductor  $\mathfrak{o}_F$ .

Fix a self-dual lattice  $L \subset W$ , let  $K := \operatorname{Stab}(L)$ ; it is hyperspecial in G(F) and lifts canonically to  $\tilde{G}$ . Let  $f_K$  be the unit in the corresponding antigenuine spherical Hecke algebra.

Use the Haar measures on G(F) and H(F) such that any hyperspecial subgroup has volume 1.

#### **Theorem**

For  $f = f_K$ , we may take  $f^H$  to be the unit in a spherical Hecke algebra of H.

#### Descent

Reduce to to Lie algebras of the connected centralizers of semisimple elements ( $\Rightarrow$  the metaplectic covering disappears!)

- General machinery: done by Harish-Chandra, Langlands-Shelstad and Waldspurger.
- Parametrization of semisimple classes in classical groups: identify their centralizers and keep track of the correspondence of conjugacy classes after descent to Lie algebra.
- ① Descent of transfer factors: identify the local behavior of  $\Delta'$ ,  $\Delta''$  and  $\Delta_0$ , we need
  - **1** character formulas for  $\omega_{\psi}$  (due to Maktouf or Thomas),
  - elementary manipulations + linear algebra, this is somehow the least trivial part.
- Apply the endoscopic transfer for symplectic groups, unitary groups and the nonstandard transfer on Lie algebras.

# Crucial step: apply the nonstandard transfer

Example: 
$$n' = n$$
,  $n'' = 0$ ,  $H = SO(2n + 1)$ 

Consider the case  $\delta = \exp(X)$ ,  $\gamma = \exp(Y)$  where X, Y are close to 0. Then  $\Delta(\exp(Y), \exp(X)) = 1$  for  $\exp(Y) \leftrightarrow \exp(X)$ , which equivalent to  $X \leftrightarrow Y$  (correspondence by nonzero eigenvalues). Thus we are to find  $f^{H,\flat} \in C_c^\infty(\mathfrak{h}(F))$  such that

$$J_G^{\mathrm{st}}(X, f^{\flat}) = J_H^{\mathrm{st}}(Y, f^{H,\flat}).$$

for all  $X \in \mathfrak{g}_{reg}(F)$ ,  $Y \in \mathfrak{h}_{reg}(F)$  such that  $X \leftrightarrow Y$ . This is exactly the nonstandard endoscopic transfer for the triplet  $(\operatorname{Sp}(2n),\operatorname{Spin}(2n+1),\ldots)$ .

Fundamental lemma: Idem, use topological Jordan decomposition to descend to Lie algebras.

### **Prospects**

- Stabilization for the elliptic regular part of the trace formula.
- ② Generalized fundamental lemma (for all elements in the antigenuine spherical Hecke algebra) ⇒ adapt [Hales].
- Character relations.
- **1** Other coverings? Cf. [Hiraga-Ikeda] for the case G = SL(2).

These results are relatively easy – just adapt the existing arguments. The case  $F=\mathbb{R}$  is discussed by Adams and Renard; they also related this to Howe correspondence.

The same notations as in the paragraph on the Fundamental Lemma.

#### Levi subgroups of the metaplectic group

After pushing-forward  $1 \to \mu_2 \to \tilde{G} \to G(F) \to 1$  by  $\mu_2 \hookrightarrow \mu_8$ , the Levi subgroups (= pull-back by **p** of Levi subgroups of G(F)) can be canonically written in the form

$$\widetilde{M} = \prod_{i \in I} \mathsf{GL}(n_i) \times \widetilde{\mathsf{Sp}}(W^{\flat})$$

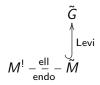
where  $(W^{\flat},\langle,
angle)\subset (W,\langle,
angle)$  with

$$2\sum_{i\in I}n_i+\dim W^\flat=\dim W=2n.$$

The map  $\mathbf{p}: \tilde{M} \to M(F)$  is id. on each  $GL(n_i)$ , and is the metaplectic covering on  $\widetilde{Sp}(W^{\flat})$ .

# Endoscopic data in general

Roughly speaking, they are elliptic endoscopic data for Levi subgroups of  $\tilde{G}$ .



The elliptic endoscopic data for  $\tilde{M}$ , their correspondence of classes and transfer factors are defined in the obvious way.

# Construction of new endoscopic data

Let  $M = \prod_i \operatorname{GL}(n_i) \times \operatorname{Sp}(W^{\flat})$ . To an elliptic endoscopic datum of  $\tilde{M}$  associated to (m', m''),  $2(m' + m'') = 2m = \dim W^{\flat}$ , we take

$$s_0 \in \widehat{\tilde{M}} = \prod_i \mathsf{GL}(n_i,\mathbb{C}) \times \mathsf{Sp}(2m,\mathbb{C})$$

whose components in  $GL(n_i)$  are trivial and the component in  $Sp(2m, \mathbb{C})$  has eigenvalues +1 (m' times) and -1 (m'' times).

By imitating Arthur's construction, we may associate an endoscopic datum of  $\tilde{G}$  to  $s \in s_0 Z_{\hat{\tilde{G}}}^{\circ}/Z_{\hat{\tilde{G}}}^{\circ}$ , whose endoscopic group is denoted by G[s]:

$$G[s] \stackrel{\text{endo}}{-} - \tilde{G}$$

Levi  $\int_{\text{endo}}^{\text{Levi}} \int_{\text{endo}}^{\text{Levi}} \int_{\tilde{M}}^{\text{Levi}}$ 

Set

$$\mathcal{E}_{M^!}(\tilde{\it G}):=\{s\in s_0Z_{\hat{\it M}}^\circ/Z_{\hat{\it G}}^0: \text{ the datum is elliptic }\}.$$

This is a finite set.

Caution: the correspondence of classes induced by



and that induced by



are different!

Let K be the hyperspecial subgroup of G(F) associated to a self-dual lattice. Lift it to a subgroup of  $\tilde{G}$ .

Antigenuine unramified weighted orbital integrals

$$r_{\tilde{M},K}^{\tilde{G}}(\tilde{\delta}) = |D^{G}(\delta)|^{\frac{1}{2}} \int_{G_{\delta}(F)\backslash G(F)} f_{K}(x^{-1}\tilde{\delta}x) v_{M}(x) dx.$$

with  $\tilde{\delta} \in \tilde{G}$  such that  $\delta = \mathbf{p}(\tilde{\delta})$  is semisimple regular. Here  $v_M$  is Arthur's weight function.

Here we should fix a Haar measure on  $G_{\delta}(F)$  and a  $W_0^G$ -invariant positive-definite form on  $\mathfrak{a}_0$ .

### Endoscopic unramified weighted orbital integral

If  $\gamma \in M^!(F)$  is semisimple *G*-regular (in the obvious sense), set

$$r_{M^!,K}^{\tilde{\mathsf{G}}}(\gamma) := \sum_{\substack{\delta \in M(F)/\mathsf{conj} \\ \delta \leftrightarrow \gamma}} \Delta(\gamma,\tilde{\delta}) r_{\tilde{M},K}^{\tilde{\mathsf{G}}}(\tilde{\delta}).$$

It will be shown to be independent of the choice of K.

### The stable side

For  $s \in \mathcal{E}_{M^!}(\tilde{G})$ , the following quotient is well-defined

$$i_{M^!}(\tilde{G}, G[s]) := \frac{[Z_{\widehat{M^!}} : Z_{\widehat{M}}^{\circ}]}{[Z_{\widehat{G[s]}} : Z_{\widehat{G}}^{\circ}]}.$$

**Twist** 

$$\gamma \mapsto \gamma[s] \in M^!(F)$$

This compensates the difference between correspondences of classes.

### Weighted fundamental lemma

Recall that Arthur has defined the unramified stable terms  $s_{M^!}^{G[s]}(\gamma[s])$ .

#### **Theorem**

Suppose the nonstandard weighted fundamental lemma on Lie algebra is satisfied for all triplets  $(Sp(2m), Spin(2m+1), \ldots)$  (w.r.t their Levi subgroups) with  $m \le n$ , then for all semisimple G-regular  $\gamma \in M^1(F)$ , we have

$$r_{M^!,K}^{\tilde{G}}(\gamma) = \sum_{s \in \mathcal{E}_{M^!}(\tilde{G})} i_{M^!}(\tilde{G}, G[s]) s_{M^!}^{G[s]}(\gamma[s]).$$

# Method of proof

- Descend to Lie algebras; this works for both the endoscopic side and the stable side (Waldspurger).
- Some complicated combinatorial coefficients appear after descent.
- **3** Apply weighted fundamental lemma and its conjectural nonstandard version on Lie algebras, then express everything in terms of stable terms  $s(\cdots)$  on Lie algebras.
- Compare the combinatorial coefficients (à la Arthur).

Some miracle happens in the last step. This somehow justifies our rule concerning  $Z_{\hat{\mathcal{C}}}^{\circ}$ .