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1 Topological groups
1.1 Definition of topological groups
For any group 𝐺, we write 1 = 1𝐺 for its identity element and write 𝐺op for its opposite group; in other
words, 𝐺op has the same underlying set as 𝐺, but with the new multiplication (𝑥, 𝑦) ↦ 𝑦𝑥.

Denote by 𝕊1 the group {𝑧 ∈ ℂ× ∶ |𝑧| = 1} endowed with its usual topological structure.

Definition 1.1. A topological group is a topological space 𝐺 endowed with a group structure, such that
the maps (𝑥, 𝑦) ↦ 𝑥𝑦 and 𝑥 ↦ 𝑥−1 are continuous. Unless otherwise specified, we always assume that
𝐺 is Hausdorff.

By a homomorphism 𝜑 ∶ 𝐺1 → 𝐺2 between topological groups, we mean a continuous homomor-
phism. This turns the collection of all topological groups into a category TopGrp, and it makes sense
to talk about isomorphisms, etc. We write Hom(𝐺1, 𝐺2) and Aut(𝐺) for the sets of homomorphisms and
automorphisms in TopGrp.

Let 𝐺 be a topological group. As is easily checked, (i) 𝐺op is also a topological group, (ii) inv ∶ 𝑥 ↦
𝑥−1 is an isomorphism of topological groups 𝐺 ∼−→ 𝐺op with inv ∘ inv = id, and (iii) for every 𝑔 ∈ 𝐺,
the translation map 𝐿𝑔 ∶ 𝑥 ↦ 𝑔𝑥 (resp. 𝑅𝑔 ∶ 𝑥 ↦ 𝑥𝑔) is a homeomorphism from 𝐺 to itself: indeed,
𝐿𝑥−1𝐿𝑥 = id = 𝑅𝑥−1𝑅𝑥.

By translating, we see that if 𝒩1 is the set of open neighborhoods of 1, then the set of open neigh-
borhoods of 𝑥 ∈ 𝐺 equals {𝑥𝑈 ∶ 𝑈 ∈ 𝒩1}; it also equals {𝑈𝑥 ∶ 𝑈 ∈ 𝒩1}.

We need a few elementary properties of topological groups. Notation: for subsets 𝐴,𝐵 ⊂ 𝐺, we
write 𝐴𝐵 = {𝑎𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ⊂ 𝐺; similarly for 𝐴𝐵𝐶 and so forth. Also put 𝐴−1 = {𝑎−1 ∶ 𝑎 ∈ 𝐴}.

Proposition 1.2. For any topological group 𝐺 (not presumed Hausdorff), the following are equivalent:

(i) 𝐺 is Hausdorff;

(ii) the intersection of all open neighborhoods containing 1 is {1};

(iii) {1} is closed in 𝐺.

Proof. It is clear that (i) ⟹ (ii), (iii). Also (ii) ⟺ (iii) since it is routine to check that {1} = ⋂𝑈∋1𝑈.
Let us prove (ii) ⟹ (i) as follows. Let 𝜈 ∶ 𝐺 × 𝐺 → 𝐺 be the function (𝑥, 𝑦) ↦ 𝑥𝑦−1. Then 𝐺 is

Hausforff if and only if the diagonal Δ𝐺 ⊂ 𝐺 × 𝐺 is closed, whilst Δ𝐺 = 𝜈−1(1). Now (ii) implies (iii)
which in turn implies Δ𝐺 is closed.

Proposition 1.3. Let 𝐺 be a topological group (not necessarily Hausdorff) and 𝐴,𝐵 ⊂ 𝐺 be subsets.

1. If one of 𝐴, 𝐵 is open, then 𝐴𝐵 is open.

2. If both 𝐴, 𝐵 are compact, then so is 𝐴𝐵.

3. If one of 𝐴, 𝐵 is compact and the other is closed, then 𝐴𝐵 is closed.

Proof. Suppose that 𝐴 is open. Then 𝐴𝐵 = ⋃𝑏∈𝐵𝐴𝑏 is open as well.
Suppose that 𝐴, 𝐵 are compact. The image 𝐴𝐵 of 𝐴 × 𝐵 under multiplication is also compact.
Finally, suppose𝐴 is compact and 𝐵 is closed. If 𝑥 ∉ 𝐴𝐵, then 𝑥𝐵−1 is closed and disjoint from𝐴. If

we can find an open subset𝑈 ∋ 1 such that𝑈𝐴∩𝑥𝐵−1 = ∅, then𝑈−1𝑥 ∋ 𝑥will be an open neighborhood
disjoint from 𝐴𝐵, proving that 𝐴𝐵 is closed.
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To find 𝑈, set 𝑉 ∶= 𝐺 ∖ 𝑥𝐵−1. For every 𝑎 ∈ 𝐴 ⊂ 𝑉 there exists an open subset 𝑈′
𝑎 ∋ 1 with

𝑈′
𝑎𝑎 ⊂ 𝑉. Take an open 𝑈𝑎 ∋ 1 with 𝑈𝑎𝑈𝑎 ⊂ 𝑈′

𝑎. Compactness furnishes a finite subset 𝐴0 ⊂ 𝐴 such
that 𝐴 ⊂ ⋃𝑡∈𝐴0 𝑈𝑡𝑡. We claim that 𝑈 ∶= ⋂𝑡∈𝐴0 𝑈𝑡 satisfies the requirements. Indeed, 𝑈 ∋ 1 and each
𝑎 ∈ 𝐴 belongs to 𝑈𝑡𝑡 for some 𝑡 ∈ 𝐴0, hence

𝑈𝑎 ⊂ 𝑈𝑈𝑡𝑡 ⊂ 𝑈𝑡𝑈𝑡𝑡 ⊂ 𝑈′
𝑡 𝑡 ⊂ 𝑉,

thus 𝑈𝐴 ⊂ 𝑉.

Recall that a topological space is locally compact if every point has a compact neighborhood.

Proposition 1.4. Let 𝐻 be a subgroup of a topological group 𝐺 (not necessarily Hausdorff). Endow
𝐺/𝐻 with the quotient topology.

1. The quotient map 𝜋 ∶ 𝐺 → 𝐺/𝐻 is open and continuous.

2. If 𝐺 is locally compact, so is 𝐺/𝐻.

3. 𝐺/𝐻 is Hausdorff (resp. discrete) if and only if 𝐻 is closed (resp. open).

The same holds for 𝐻\𝐺.

Proof. The quotient map is always continuous. If𝑈 ⊂ 𝐺 is open, then 𝜋−1(𝜋(𝑈)) = 𝑈𝐻 is open by 1.3,
hence 𝜋(𝑈) is open.

Suppose 𝐺 is locally compact. By homogeneity, it suffices to argue that the coset 𝐻 = 𝜋(1) has
compact neighborhood in 𝐺/𝐻. Let 𝐾 ∋ 1 be a compact neighborhood in 𝐺. Choose a neighborhood
𝑈 ∋ 1 such that 𝑈−1𝑈 ⊂ 𝐾. Claim: 𝜋(𝑈) ⊂ 𝜋(𝐾). Indeed, if 𝑔𝐻 ∈ 𝜋(𝑈), then the neighborhood 𝑈𝑔𝐻
intersects 𝜋(𝑈); that is, 𝑢𝑔𝐻 = 𝑢′𝐻 for some 𝑢, 𝑢′ ∈ 𝑈. Hence 𝑔𝐻 = 𝑢−1𝑢′𝐻 ∈ 𝜋(𝑈−1𝑈) ⊂ 𝜋(𝐾).
Therefore 𝜋(𝑈) ∋ 𝜋(1) is an open neighborhood with 𝜋(𝑈) compact, since 𝜋(𝐾) is compact.

If 𝐺/𝐻 is Hausdorff (resp. discrete) then 𝐻 = 𝜋−1(𝜋(1)) is closed (resp. open). Conversely, suppose
that 𝐻 is closed in 𝐺. Given cosets 𝑥𝐻 ≠ 𝑦𝐻, choose an open neighborhood 𝑉 ∋ 1 in 𝐺 such that
𝑉𝑥 ∩ 𝑦𝐻 = ∅; equivalently 𝑉𝑥𝐻 ∩ 𝑦𝐻 = ∅. Then choose an open 𝑈 ∋ 1 in 𝐺 such that 𝑈−1𝑈 ⊂ 𝑉. It
follows that 𝑈𝑥𝐻 ∩ 𝑈𝑦𝐻 = ∅, and these are disjoint open neighborhoods of 𝜋(𝑥) and 𝜋(𝑦). All in all,
𝐺/𝐻 is Hausdorff.

On the other hand, 𝐻 is open implies 𝜋(𝐻) is open, thus all singletons in 𝐺/𝐻 are open, whence the
discreteness.

As for 𝐻\𝐺, we pass to 𝐺op.

Lemma 1.5. Let𝐺 be a locally compact group (not necessarily Hausdorff) and let𝐻 ⊂ 𝐺 be a subgroup.
Every compact subset of 𝐻\𝐺 is the image of some compact subset of 𝐺.

Proof. Let 𝑈 ∋ 1 be an open neighborhood in 𝐺 with compact closure 𝑈. For every compact subset 𝐾♭
of 𝐻\𝐺, we have an open covering 𝐾♭ ⊂ ⋃𝑔∈𝐺 𝜋(𝑔𝑈), hence there exists 𝑔1, … , 𝑔𝑛 ∈ 𝐺 such that

𝐾♭ ⊂
𝑛
􏾌
𝑖=1

𝜋(𝑔𝑖𝑈) = 𝜋

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾌
𝑖=1

𝑔𝑖𝑈

⎞
⎟⎟⎟⎟⎟⎠ ⊂ 𝜋

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾌
𝑖=1

𝑔𝑖𝑈̄

⎞
⎟⎟⎟⎟⎟⎠

Take the compact subset 𝐾 ∶= ⋃𝑛
𝑖=1 𝑔𝑖𝑈̄ ∩ 𝜋−1(𝐾♭) and observe that 𝜋(𝐾) = 𝐾♭.

Remark 1.6. The following operations on topological groups are evident.

1. Let 𝐻 ⊂ 𝐺 be a closed normal subgroup, then 𝐺/𝐻 is a topological group by Proposition 1.4,
locally compact if 𝐺 is. We leave it to the reader to characterize 𝐺/𝐻 by universal properties in
TopGrp.
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2. If 𝐺1, 𝐺2 are topological groups, then 𝐺1 × 𝐺2 is naturally a topological group. Again, it has
an outright categorical characterization: the product in TopGrp. More generally, one can form
fibered products in TopGrp.

3. In a similar vein, lim←−− exist in TopGrp: their underlying abstract groups are just the usual lim←−−.

Harmonic analysis, in its classical sense, applies mainly to locally compact topological groups. Here-
after we adopt the shorthand locally compact groups.
Remark 1.7. The family of locally compact groups is closed under passing to closed subgroups, Hausdorff
quotients and finite direct products. However, infinite direct products usually yield non-locally compact
groups. This is one of the motivation for introducing restrict products into harmonic analysis.

Example 1.8. Discrete groups are locally compact; finite groups are compact.

Example 1.9. The familiar groups (ℝ, +), (ℂ, +) are locally compact; so are (ℂ×, ⋅) and (ℝ×, ⋅). The
identity connected component ℝ×

>0 of ℝ× is isomorphic to (ℝ, +) through the logarithm. The quotient
group (ℝ/ℤ, +) ≃ 𝕊1 (via 𝑧 ↦ 𝑒2𝜋𝑖𝑧) is compact.

1.2 Local fields
Just as the case of groups, a locally compact field is a field 𝐹 with a locally compact Hausdorff topology,
such that (𝐹, +) is a topological group, and that (𝑥, 𝑦) ↦ 𝑥𝑦 and 𝑥 ↦ 𝑥−1 (on 𝐹×) are both continuous.

Definition 1.10. A local field is a locally compact field that is not discrete.

A detailed account of local fields can be found in any textbook on algebraic number theory. The
topology on a local field 𝐹 is always induced by an absolute value | ⋅ |𝐹 ∶ 𝐹 → ℝ≥0 satisfying

|𝑥|𝐹 = 0 ⟺ 𝑥 = 0, |1|𝐹 = 1;
|𝑥 + 𝑦|𝐹 ≤ |𝑥|𝐹 + |𝑦|𝐹;
|𝑥𝑦|𝐹 = |𝑥| ⋅ |𝑦|𝐹.

Furthermore 𝐹 is complete with respect to | ⋅ |. Up to continuous isomorphisms, local fields are classified
as follows.

Archimedean The fields ℝ and ℂ, equipped with the usual absolute values;

Non-archimedean, characteristic zero The fieldsℚ𝑝 = ℤ𝑝[
1
𝑝 ] (the 𝑝-adic numbers, where 𝑝 is a prime

number) or their finite extensions;

Non-archimedean, characteristic 𝑝 > 0 The fields 𝔽𝑞((𝑡)) = 𝔽𝑞J𝑡K[ 1𝑡 ] of Laurent series in the variable
𝑡 or their finite extensions, where 𝑞 is a power of 𝑝. Here 𝔽𝑞 denotes the finite field of 𝑞 elements.

Let 𝐹 be a non-archimedean local field. It turns out the ultrametric inequality is satisfied:

|𝑥 + 𝑦|𝐹 ≤ max{|𝑥|𝐹, |𝑦|𝐹}, with equality when |𝑥| ≠ |𝑦|.

Furthermore, 𝔬𝐹 = {𝑥 ∶ |𝑥| ≤ 1} is a subring, called the ring of integers, and 𝔭𝐹 = {𝑥 ∶ |𝑥| < 1} is its unique
maximal ideal. In fact 𝔭𝐹 is of the form (𝜛𝐹); here 𝜛𝐹 is called a uniformizer of 𝐹, and

𝐹× = 𝜛ℤ𝐹 × 𝔬×𝐹 , 𝔬×𝐹 = {𝑥 ∶ |𝑥| = 1}.

The normalized absolute value | ⋅ |𝐹 for non-archimedean 𝐹 is defined by

|𝜛𝐹| = 𝑞−1, 𝑞 ∶= |𝔬𝐹/𝔭𝐹|
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where 𝜛𝐹 is any uniformizer. We will interpret | ⋅ |𝐹 in terms of modulus characters in 1.33.
If 𝐸 is a finite extension of any local field 𝐹, then 𝐸 is also local and | ⋅ |𝐹 admits a unique extension

to 𝐸 given by
| ⋅ |𝐸 = |𝑁𝐸/𝐹(⋅)|

1/[𝐸∶𝐹]
𝐹

where 𝑁𝐸/𝐹 ∶ 𝐸 → 𝐹 is the norm map. It defines the normalized absolute value on 𝐸 in the non-
archimedean case.
Remark 1.11. The example ℝ (resp. ℚ𝑝) above is obtained by completing ℚ with respect to the usual
absolute value (resp. the 𝑝-adic one |𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥), where 𝑣𝑝(𝑥) = 𝑘 if 𝑥 = 𝑝𝑘 𝑢𝑣 ≠ 0 with 𝑢, 𝑣 ∈ ℤ coprime
to 𝑝, and 𝑣𝑝(0) = +∞).

Likewise, 𝔽𝑞((𝑡)) is the completion of the function field𝔽𝑞(𝑡)with respect to |𝑥|0 = 𝑞−𝑣0(𝑥) where 𝑣0(𝑥)
is the vanishing order of the rational function 𝑥 at 0.

In both cases, the local field 𝐹 arises from completing some global fieldℚ or 𝔽𝑞(𝑡), or more generally
their finite extensions. The adjective “global” comes from geometry, which is manifest in the case 𝔽𝑞(𝑡):
it is the function field of the curveℙ1𝔽𝑞 , and𝔽𝑞((𝑡)) should be thought as the function field on the “punctured
formal disk” at 0.

1.3 Measures and integrals
We shall only consider Radon measures on a locally compact Hausdorff space 𝑋. These measures are
by definition Borel, locally finite and inner regular on open subsets.

Define the ℂ-vector space

𝐶𝑐(𝑋) ∶= 􏿺𝑓 ∶ 𝑋 → ℂ, continuous, compactly supported􏿽

= 􏾌
𝐾⊂𝑋

compact

𝐶𝑐(𝑋, 𝐾), 𝐶𝑐(𝑋, 𝐾) ∶= {𝑓 ∈ 𝐶𝑐(𝑋) ∶ Supp(𝑓) ⊂ 𝐾}.

We write 𝐶𝑐(𝑋)+ ∶= 􏿺𝑓 ∈ 𝐶𝑐(𝑋) ∶ 𝑓 ≥ 0􏿽.
Remark 1.12. Following Bourbaki, we identify positive Radon measures 𝜇 on 𝑋 and positive linear
functionals 𝐼 = 𝐼𝜇 ∶ 𝐶𝑐(𝑋) → ℂ. This means that 𝐼(𝑓) ≥ 0 if 𝑓 ∈ 𝐶𝑐(𝑋)+. In terms of integrals,
𝐼𝜇(𝑓) = ∫𝑋 𝑓 d𝜇. This is essentially a consequence of the Riesz representation theorem.

Furthermore, to prescribe a positive linear functional 𝐼 is the same as giving a function 𝐼 ∶ 𝐶𝑐(𝑋)+ →
ℝ≥0 that satisfies

• 𝐼(𝑓1 + 𝑓2) = 𝐼(𝑓1) + 𝐼(𝑓2),

• 𝐼(𝑡𝑓) = 𝑡𝐼(𝑓) when 𝑡 ∈ ℝ≥0.

To see this, write 𝑓 = 𝑢 + 𝑖𝑣 ∈ 𝐶𝑐(𝑋) where 𝑢, 𝑣 ∶ 𝑋 → ℝ; furthermore, any real-valued 𝑓 ∈ 𝐶𝑐(𝑋) can
be written as 𝑓 = 𝑓+ − 𝑓− as usual, where 𝑓± ∈ 𝐶𝑐(𝑋)+. All these decompositions are canonical.
Remark 1.13. The complex Radon measures correspond to linear functionals 𝐼 ∶ 𝐶𝑐(𝐶) → ℂ such that
𝐼|𝐶𝑐(𝑋,𝐾) is continuous with respect to ‖ ⋅ ‖∞,𝐾 ∶= sup𝐾 | ⋅ |, for all 𝐾. In other words, 𝐼 is continuous for
the topology of lim−−→𝐾

𝐶𝑐(𝑋, 𝐾) ≃ 𝐶𝑐(𝑋).

Now let𝐺 be a locally compact group, and suppose that𝑋 is endowed with a continuous left𝐺-action.
Continuity here means that the action map

𝑎 ∶ 𝐺 × 𝑋⟶ 𝑋
(𝑔, 𝑥)⟼ 𝑔𝑥
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is continuous. Similarly for right 𝐺-actions. This action transports the functions 𝑓 ∈ 𝐶𝑐(𝑋) as well:

𝑓𝑔 ∶= 􏿮𝑥 ↦ 𝑓(𝑔𝑥)􏿱 , left action,
𝑔𝑓 ∶= 􏿮𝑥 ↦ 𝑓(𝑥𝑔)]􏿱 , right action.

These terminologies are justified as 𝑓𝑔𝑔′ = 􏿴𝑓𝑔􏿷
𝑔′

and 𝑔𝑔′𝑓 = 𝑔 􏿴𝑔′𝑓􏿷; they also preserve 𝐶𝑐(𝑋)+. There-
fore, for 𝐺 acting on the left (resp. on the right) of 𝑋, it also acts from the same side on the space of
positive Radon measures on 𝑋 by transport of structure. In terms of positive linear functionals,

𝐼 ⟼ 􏿮𝑔𝐼 ∶ 𝑓 ↦ 𝐼(𝑓𝑔)􏿱 , left action,

𝐼 ⟼ 􏿮𝐼𝑔 ∶ 𝑓 ↦ 𝐼(𝑔𝑓)􏿱 , right action.

This pair of definitions is swapped under 𝐺⇝ 𝐺op.
By taking transposes, 𝐺 also transports complex Radon measures (Remark 1.13). Mnemonic tech-

nique:
d(𝑔𝜇)(𝑥) = d𝜇(𝑔−1𝑥), d(𝜇𝑔)(𝑥) = d𝜇(𝑥𝑔−1),

since a familiar change of variables yields

􏾙
𝑋
𝑓(𝑥) d(𝑔𝜇)(𝑥) transpose= 𝐼(𝑓𝑔) = 􏾙

𝑋
𝑓(𝑔𝑥) d𝜇(𝑥) = 􏾙

𝑋
𝑓(𝑥) d𝜇(𝑔−1𝑥),

􏾙
𝑋
𝑓(𝑥) d(𝜇𝑔)(𝑥) transpose= 𝐼(𝑔𝑓) = 􏾙

𝑋
𝑓(𝑥𝑔) d𝜇(𝑥) = 􏾙

𝑋
𝑓(𝑥) d𝜇(𝑥𝑔−1)

and 𝑓 ∈ 𝐶𝑐(𝑋) is arbitrary. These formulas extend to all 𝑓 ∈ 𝐿1(𝑋, 𝜇) by approximation.

Definition 1.14. Suppose that 𝐺 acts continuous on the left (resp. right) of 𝑋. Let 𝜒 ∶ 𝐺 → ℝ×
>0

by a continuous homomorphism. We say that a complex Radon measure 𝜇 is quasi-invariant or an
eigenmeasure with eigencharacter 𝜒 if 𝑔𝜇 = 𝜒(𝑔)−1𝜇 (resp. 𝜇𝑔 = 𝜒(𝑔)−1𝜇) for all 𝑔 ∈ 𝐺. This can also
be expressed as

d𝜇(𝑔𝑥) = 𝜒(𝑔) d𝜇(𝑥), left action,
d𝜇(𝑥𝑔) = 𝜒(𝑔) d𝜇(𝑥), right action.

When 𝜒 = 1, we call 𝜇 an invariant measure.

Observe that 𝜇 is quasi-invariant with eigencharacter 𝜒 under left𝐺-action if and only if it is so under
the right 𝐺op-action.
Remark 1.15. Let 𝜒, 𝜂 be continuous homomorphisms 𝐺 → ℂ×. Suppose that 𝑓 ∶ 𝑋 → ℂ is contin-
uous with 𝑓(𝑔𝑥) = 𝜂(𝑔)𝑓(𝑥) (resp. 𝑓(𝑥𝑔) = 𝜂(𝑔)𝑓(𝑥)) for all 𝑔 and 𝑥. Then 𝜇 is quasi-invariant with
eigencharacter 𝜒 if and only if 𝑓𝜇 is quasi-invariant with eigencharacter 𝜂𝜒.

In particular, we may let 𝐺 act on 𝑋 = 𝐺 by left (resp. right) translations. Therefore, it makes sense
to talk about left and right invariant measures on 𝐺.

1.4 Haar measures
In what follows, measures are always nontrivial positive Radon measures.

Definition 1.16. Let 𝐺 be a locally compact group. A left (resp. right) invariant measure on 𝐺 is called
a left (resp. right) Haar measure.
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The group ℝ×
>0 acts on the set of left (resp. right) Haar measures by rescaling. For commutative

groups we make no distinction of left and right.

Example 1.17. If 𝐺 is discrete, the counting measure Count(𝐸) = |𝐸| is a left and right Haar measure.
When 𝐺 is finite, it is customary to take the normalized version 𝜇 ∶= |𝐺|−1Count.

Definition 1.18. Let 𝐺 be a locally compact. For 𝑓 ∈ 𝐶𝑐(𝐺) we write ̌𝑓 ∶ 𝑥 ↦ 𝑓(𝑥−1), ̌𝑓 ∈ 𝐶𝑐(𝐺).
For any Radon measure 𝜇 on 𝐺, let 𝜇̌ be the Radon measure with d𝜇̌(𝑥) = d𝜇(𝑥−1); in terms of linear
functionals, 𝐼𝜇̌(𝑓) = 𝐼𝜇( ̌𝑓).

Lemma 1.19. In the situation above, 𝜇 is a left (resp. right) Haar measure if and only if 𝜇̌ is a right
(resp. left) Haar measure.

Proof. An instance of transport of structure, because 𝑥 ↦ 𝑥−1 is an isomorphism of locally compact
groups 𝐺 ∼−→ 𝐺op.

Theorem 1.20 (A. Weil). For every locally compact group 𝐺, there exists a left (resp. right) Haar mea-
sure on 𝐺. They are unique up to ℝ×

>0-action.

Proof. The following arguments are taken from Bourbaki [1, VII §1.2]. Upon replacing 𝐺 by 𝐺op, it
suffices to consider the case of left Haar measures. For the existence part, we seek a left 𝐺-invariant
positive linear functional on 𝐶𝑐(𝐺). Write

𝐶𝑐(𝐺)∗+ ∶= 𝐶𝑐(𝐺)+ ∖ {0}.

For any compact subset 𝐾 ⊂ 𝐺, define 𝐶𝑐(𝐺, 𝐾)+ and 𝐶𝑐(𝐺, 𝐾)∗+ by intersecting 𝐶𝑐(𝐺, 𝐾) with 𝐶𝑐(𝐺)+
and 𝐶𝑐(𝐺)∗+. Observe that for all 𝑓 ∈ 𝐶𝑐(𝐺)+ and 𝑔 ∈ 𝐶𝑐(𝐺)∗+, there exist 𝑛 ≥ 1, 𝑐1, … , 𝑐𝑛 ∈ ℝ≥0 and
𝑠1, … , 𝑠𝑛 ∈ 𝐺 such that

𝑓 ≤ 𝑐1𝑔𝑠1 + …𝑐𝑛𝑔𝑠𝑛 , 𝑔𝑠𝑖(𝑥) ∶= 𝑔(𝑠𝑖𝑥).

Indeed, there is an open subset 𝑈 ⊂ 𝐺 such that inf𝑈 𝑔 > 0; now cover Supp(𝑓) by finitely many
𝑠1𝑈,… , 𝑠𝑛𝑈.

Given 𝑓, 𝑔 as before, define (𝑓 ∶ 𝑔) to be the infimum of 𝑐1+…+𝑐𝑛 among all choices of (𝑐1, … , 𝑠1, …)
satisfying the bound above. We contend that

(𝑓𝑠 ∶ 𝑔) = (𝑓 ∶ 𝑔), 𝑠 ∈ 𝐺, (1.1)
(𝑡𝑓 ∶ 𝑔) = 𝑡(𝑓 ∶ 𝑔), 𝑡 ∈ ℝ≥0, (1.2)

(𝑓1 + 𝑓2 ∶ 𝑔) ≤ (𝑓1 ∶ 𝑔) + (𝑓2 ∶ 𝑔), (1.3)

(𝑓 ∶ 𝑔) ≥ sup 𝑓
sup 𝑔 , (1.4)

(𝑓 ∶ ℎ) ≤ (𝑓 ∶ 𝑔)(𝑔 ∶ ℎ), ℎ, 𝑔 ∈ 𝐶𝑐(𝐺)∗+, (1.5)

0 < 1
(𝑓0 ∶ 𝑓)

≤ (𝑓 ∶ 𝑔)
(𝑓0 ∶ 𝑔)

≤ (𝑓 ∶ 𝑓0), 𝑓, 𝑓0, 𝑔 ∈ 𝐶𝑐(𝐺)∗+, (1.6)

and that for all 𝑓1, 𝑓2, ℎ ∈ 𝐶𝑐(𝐺)+ with ℎ|Supp(𝑓1+𝑓2) ≥ 1, and all 𝜖 > 0, there is a compact neighborhood
𝐾 ∋ 1 such that

(𝑓1 ∶ 𝑔) + (𝑓2 ∶ 𝑔) ≤ (𝑓1 + 𝑓2 ∶ 𝑔) + 𝜖(ℎ ∶ 𝑔), 𝑔 ∈ 𝐶𝑐(𝐺, 𝐾)∗+. (1.7)

The properties (1.1) — (1.4) are straightforward. For (1.5), note that

𝑓 ≤ 􏾜
𝑖
𝑐𝑖𝑔𝑠𝑖 , 𝑔 ≤ 􏾜

𝑗
𝑑𝑗ℎ𝑡𝑗 ⟹ 𝑓 ≤􏾜

𝑖,𝑗
𝑐𝑖𝑑𝑗ℎ𝑡𝑗𝑠𝑖
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hence (𝑓 ∶ ℎ) ≤ ∑𝑖 𝑐𝑖∑𝑗 𝑑𝑗. Apply (1.5) to both 𝑓0, 𝑓, 𝑔 and 𝑓, 𝑓0, 𝑔 to obtain (1.6).

To verify (1.7), let 𝐹 ∶= 𝑓1 + 𝑓2 +
𝜖ℎ
2 . Use the condition on ℎ to define

𝜑𝑖(𝑥) =
⎧⎪⎨
⎪⎩
𝑓𝑖(𝑔)/𝐹(𝑥), 𝑥 ∈ Supp(𝑓1 + 𝑓2)
0, otherwise.

∈ 𝐶𝑐(𝐺)+ (𝑖 = 1, 2).

Furthermore, given 𝜂 > 0 we may choose the compact neighborhood 𝐾 ∋ 1 such that |𝜑𝑖(𝑥) − 𝜑𝑖(𝑦)| ≤ 𝜂
whenever 𝑥−1𝑦 ∈ 𝐾, for 𝑖 = 1, 2. One readily verifies that for all 𝑔 ∈ 𝐶𝑐(𝐺, 𝐾)+ and 𝑖 = 1, 2,

𝜑𝑖𝑔𝑠 ≤ (𝜑𝑖(𝑠) + 𝜂) ⋅ 𝑔𝑠, 𝑠 ∈ 𝐺.

Suppose that 𝐹 ≤ 𝑐1𝑔𝑠1 + …𝑐𝑛𝑔𝑠𝑛 , then 𝑓𝑖 = 𝜑𝑖𝐹 ≤ ∑𝑛
𝑗=1 𝑐𝑗(𝜑𝑖(𝑠𝑗) + 𝜂)𝑔

𝑠𝑗 by the previous step. As
𝜑1 + 𝜑2 ≤ 1, we infer that (𝑓1 ∶ 𝑔) + (𝑓2 ∶ 𝑔) ≤ (1 + 2𝜂)∑

𝑛
𝑗=1 𝑐𝑗. By (1.3) and (1.5),

(𝑓1 ∶ 𝑔) + (𝑓2 ∶ 𝑔) ≤ (1 + 2𝜂)(𝐹 ∶ 𝑔) ≤ (1 + 2𝜂) 􏿵(𝑓1 + 𝑓2 ∶ 𝑔) +
𝜖
2(ℎ ∶ 𝑔)

􏿸

≤ (𝑓1 + 𝑓2 ∶ 𝑔) + 􏿵
𝜖
2 + 2𝜂(𝑓1 + 𝑓2 ∶ ℎ) + 𝜖𝜂

􏿸 (ℎ ∶ 𝑔).

Choosing 𝜂 small enough relative to 𝑓1, 𝑓2, ℎ, 𝜖 yields (1.7).
Proceed to the construction of Haar measure. We fix 𝑓0 ∈ 𝐶𝑐(𝐺)∗+ and set

𝐼𝑔(𝑓) ∶=
(𝑓 ∶ 𝑔)
(𝑓0 ∶ 𝑔)

, 𝑓 ∈ 𝐶𝑐(𝐺)+, 𝑔 ∈ 𝐶𝑐(𝐺)∗+.

We want to “take the limit” over 𝑔 ∈ 𝐶𝑐(𝐺, 𝐾)∗+, where 𝐾 shrinks to {1} and 𝑓, 𝑓0 ∈ 𝐶𝑐(𝐺)∗+ are kept
fixed. By (1.6) we see 𝐼𝑔(𝑓) ∈ ℑ ∶= 􏿮(𝑓0 ∶ 𝑓)−1, (𝑓 ∶ 𝑓0)􏿱. For each compact neighborhood 𝐾 ∋ 1 in 𝐺,
let 𝐼𝐾(𝑓) ∶= 􏿺𝐼𝑔(𝑓) ∶ 𝑔 ∈ 𝐶𝑐(𝐺, 𝐾)∗+􏿽. The family of all 𝐼𝐾(𝑓) form a filter base in the compact space ℑ,
hence can be refined into an ultrafilter which has the required limit 𝐼(𝑓).

We refer to [2, I. §6 and §9.1] for the language of filters and its relation with compactness. Alterna-
tively, one can argue using the Moore–Smith theory of nets together with Tychonoff’s theorem; see [6,
(15.25)].

Then 𝐼 ∶ 𝐶𝑐(𝐺)+ → ℝ≥0 satisfies𝐺-invariance by (1.1). From (1.3) we infer 𝐼(𝑓1+𝑓2) ≤ 𝐼(𝑓1)+𝐼(𝑓2)
which already holds for all 𝐼𝑔; from (1.7) we infer 𝐼(𝑓1) + 𝐼(𝑓2) ≤ 𝐼(𝑓1 + 𝑓2) + 𝜖𝐼(ℎ) whenever ℎ ≥ 1 on
Supp(𝑓1 + 𝑓2) and 𝜖 > 0 (true by using 𝑔 with sufficiently small support), so 𝐼(𝑓1 + 𝑓2) = 𝐼(𝑓1) + 𝐼(𝑓2)
follows. The behavior under dilation follows from (1.2). All in all, 𝐼 is the required Haar measure on 𝐺.

Now turn to the uniqueness. Let us consider a left (resp. right) Haar measure 𝜇 (resp. 𝜈) on 𝐺. It
suffices by Lemma 1.19 to show that 𝜇 and 𝜈̌ are proportional. Fix 𝑓 ∈ 𝐶𝑐(𝐺) such that ∫

𝐺
𝑓 d𝜇 ≠ 0. It

is routine to show that the function

𝐷𝑓 ∶ 𝑥⟼ 􏿶􏾙
𝐺
𝑓 d𝜇􏿹

−1

􏾙
𝐺
𝑓(𝑦−1𝑥) d𝜈(𝑦), 𝑥 ∈ 𝐺

is continuous. Let 𝑔 ∈ 𝐶𝑐(𝐺). Since (𝑥, 𝑦) ↦ 𝑓(𝑥)𝑔(𝑦𝑥) is in 𝐶𝑐(𝐺 × 𝐺), Fubini’s theorem implies that

􏾙
𝐺
𝑓 d𝜇 ⋅ 􏾙

𝐺
𝑔 d𝜈 = 􏾙

𝐺
𝑓(𝑥) 􏿶 􏾙

𝐺
𝑔(𝑦) d𝜈(𝑦)􏿹 d𝜇(𝑥) d𝜈(𝑦)=d𝜈(𝑦𝑥)=

􏾙
𝐺
􏾙
𝐺
𝑓(𝑥)𝑔(𝑦𝑥) d𝜇(𝑥) d𝜈(𝑦) d𝜇(𝑥)=d𝜇(𝑦𝑥)= 􏾙

𝐺
􏿶􏾙

𝐺
𝑓(𝑦−1𝑥)𝑔(𝑥) d𝜇(𝑥)􏿹 d𝜈(𝑦)

= 􏾙
𝐺
𝑔(𝑥) 􏿶􏾙

𝐺
𝑓(𝑦−1𝑥) d𝜈(𝑦)􏿹 d𝜇(𝑥) = 􏾙

𝐺
𝑓 d𝜇 ⋅ 􏾙

𝐺
𝑔𝐷𝑓 d𝜇(𝑥).
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Hence ∫
𝐺
𝑔 d𝜈 = ∫

𝐺
𝐷𝑓 ⋅ 𝑔 d𝜇. Since 𝑔 is arbitrary and 𝐷𝑓 is continuous, 𝐷𝑓(𝑥) is independent of 𝑓,

hereafter written as 𝐷(𝑥). Now
𝐷(1)􏾙

𝐺
𝑓 d𝜇 = 􏾙

𝐺
𝑓 d𝜈̌

for 𝑓 ∈ 𝐶𝑐(𝐺) with ∫𝑓 d𝜇 ≠ 0. As both sides are linear functionals on the whole 𝐶𝑐(𝐺), the equality
extends and yield the asserted proportionality.

Proposition 1.21. Let 𝜇 be a left (resp. right) Haar measure on 𝐺. Then 𝐺 is discrete if and only if
𝜇({1}) > 0, and 𝐺 is compact if and only if 𝜇(𝐺) < +∞.

Proof. The “only if” parts are easy: for discrete 𝐺 we may take 𝜇 = Count, and for compact 𝐺 we
integrate the constant function 1.

For the “if” part, first suppose that 𝜇({1}) > 0. Then every singleton has measure 𝜇({1}). Observe
that every compact neighborhood 𝐾 of 1must satisfy 𝜇(𝐾) < ∞, therefore 𝐾 is finite. As 𝐺 is Hausdorff,
{1} is thus open, so 𝐺 is discrete.

Next, suppose𝜇(𝐺) is finite. Fix a compact neighborhood𝐾 ∋ 1 so that𝜇(𝐾) > 0. If 𝑔1, … , 𝑔𝑛 ∈ 𝐺 are
such that {𝑔𝑖𝐾}𝑛𝑖=1 are disjoint, then 𝑛𝜇(𝐾) = 𝜇(⋃𝑖 𝑔𝑖𝐾) ≤ 𝜇(𝐺) and this gives 𝑛 ≤ 𝜇(𝐺)/𝜇(𝐾). Choose a
maximal collection 𝑔1, … , 𝑔𝑛 ∈ 𝐺with the disjointness property above. Every 𝑔 ∈ 𝐺must lie in 𝑔𝑖𝐾 ⋅𝐾−1
for some 1 ≤ 𝑖 ≤ 𝑛, since maximality implies 𝑔𝐾 ∩ 𝑔𝑖𝐾 ≠ ∅ for some 𝑖. Hence 𝐺 = ⋃𝑛

𝑖=1 𝑔𝑖𝐾 ⋅ 𝐾−1 is
compact by 1.3.

1.5 The modulus character
Let 𝜃 ∶ 𝐺1 → 𝐺2 be an isomorphism of locally compact groups. A Radon measure 𝜇 on 𝐺1 transports
to a Radon measure 𝜃∗𝜇 on 𝐺2: the corresponding positive linear functional is

𝐼𝜃∗𝜇(𝑓) = 𝐼𝜇(𝑓𝜃), 𝑓𝜃 ∶= 𝑓 ∘ 𝜃, 𝑓 ∈ 𝐶𝑐(𝐺2).

It is justified to express this as d(𝜃∗𝜇)(𝑥) = d𝜇(𝜃−1(𝑥)).
Evidently, 𝜃∗ commutes with rescaling by ℝ×

>0. By transport of structure, 𝜃∗𝜇 is a left (resp. right)
Haar measure if 𝜇 is. For two composable isomorphisms 𝜃, 𝜎 we have

(𝜃𝜎)∗𝜇 = 𝜃∗(𝜎∗𝜇).

Assume hereafter 𝐺1 = 𝐺2 = 𝐺 and 𝜃 ∈ Aut(𝐺). We consider 𝜃−1𝜇 ∶= (𝜃−1)∗𝜇 where 𝜇 is a left
Haar measure on 𝐺. Theorem 1.20 imlies 𝜃−1𝜇 is a positive multiple of 𝜇, and this ratio does not depend
on 𝜇.

Definition 1.22. For every 𝜃 ∈ Aut(𝐺), define its modulus 𝛿𝜃 as the positive number determined by

𝜃−1𝜇 = 𝛿𝜃𝜇, equivalently d𝜇(𝜃(𝑥)) = 𝛿𝜃 d𝜇(𝑥),

where 𝜇 is any left Haar measure on 𝐺.

Remark 1.23. One can also use right Haar measures to define the modulus. Indeed, the right Haar
measures are of the form form 𝜇̌ where 𝜇 is a left Haar measure, and

d𝜇̌(𝜃(𝑥)) = d𝜇(𝜃(𝑥)−1) = d𝜇(𝜃(𝑥−1)) = 𝛿𝜃 ⋅ d𝜇(𝑥−1) = 𝛿𝜃 ⋅ d𝜇̌(𝑥).

Remark 1.24. The modulus characters are sometimes defined as Δ𝐺(𝑔) = 𝛿𝐺(𝑔)−1 in the literature, such
as [1, VII §1.3] or [6]. This ambiguity is responsible for uncountably many headaches. Our convention
for 𝛿𝐺 seems to conform with most papers in representation theory.
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Proposition 1.25. The map 𝜃 ↦ 𝛿𝜃 defines a homomorphism Aut(𝐺) → ℝ×
>0.

Proof. Use the fact that

􏿴(𝜃𝜎)−1􏿷
∗
𝜇 = 𝜎−1∗ (𝜃−1∗ 𝜇) = 𝛿𝜃 ⋅ 𝜎−1∗ 𝜇 = 𝛿𝜃𝛿𝜎 ⋅ 𝜇

for any two automorphisms 𝜃, 𝜎 of 𝐺 and any left Haar measure 𝜇.

Example 1.26. If 𝐺 is discrete, then 𝛿𝜃 = 1 for all 𝜃 since the counting measure is preserved.

Definition 1.27. For 𝑔 ∈ 𝐺, let Ad(𝑔) be the automorphism 𝑥 ↦ 𝑔𝑥𝑔−1 of 𝐺. Define 𝛿𝐺(𝑔) ∶= 𝛿Ad(𝑔) ∈
ℝ×
>0. In other words, d𝜇(𝑔𝑥𝑔−1) = 𝛿𝐺(𝑔) d𝜇(𝑥).

The following result characterizes 𝛿𝐺.

Lemma 1.28. The map 𝛿𝐺 ∶ 𝐺 → ℝ×
>0 is a continuous homomorphism. For every left (resp. right) Haar

measure 𝜇ℓ (resp. 𝜇𝑟), we have

d𝜇ℓ(𝑥𝑔) = 𝛿𝐺(𝑔)−1 d𝜇ℓ(𝑥), d𝜇𝑟(𝑔𝑥) = 𝛿𝐺(𝑔) d𝜇𝑟(𝑥).

Furthermore, 𝜇̌ℓ = 𝛿𝐺 ⋅ 𝜇ℓ and 𝜇̌𝑟 = 𝛿−1𝐺 𝜇𝑟.

Proof. Since Ad(⋅) ∶ 𝐺 → Aut(𝐺) is a homomorphism, so is 𝛿𝐺 by Proposition 1.25. As for the continuity
of 𝛿𝐺, fix a left Haar measure 𝜇 and 𝑓 ∈ 𝐶𝑐(𝐺) with 𝜇(𝑓) ∶= ∫

𝐺
𝑓 d𝜇 ≠ 0. Then

𝛿𝐺(𝑔)−1 = 𝜇(𝑓)−1􏾙
𝐺
𝑓 ∘ Ad(𝑔) d𝜇,

and it is routine to check that ∫
𝐺
𝑓 ∘ Ad(𝑔) d𝜇 is continuous in 𝑔. The second assertion results from

applying d𝜇ℓ(⋅) and d𝜇𝑟(⋅) to

𝑥𝑔 = 𝑔(Ad(𝑔−1)𝑥), 𝑔𝑥 = (Ad(𝑔)𝑥)𝑔,

respectively.
To deduce the last assertion, note that 𝛿𝐺𝜇ℓ is a right Haar measure by the previous step and Remark

1.15, thus Theorem 1.20 entails
∃𝑡 ∈ ℝ×

>0, ̌𝜇ℓ = 𝑡𝛿𝐺𝜇ℓ.

Hence 𝜇∨∨ℓ = 𝑡𝛿−1𝐺 ̌𝜇ℓ = 𝑡2𝜇ℓ, and we obtain 𝑡 = 1. A similar reasoning for 𝛿−1𝐺 𝜇𝑟 applies.

Corollary 1.29. We have 𝛿𝐺 = 1 if and only if every left Haar measure on𝐺 is also a right Haar measure,
and vice versa.

Proposition 1.30. For every 𝑔 ∈ 𝐺, we have 𝛿𝐺(𝑔)−1 = 𝛿𝐺op(𝑔).

Proof. Fix a left Haar measure 𝜇 for 𝐺 and denote the multiplication in 𝐺op by ⋆. Then d𝜇(𝑔𝑥𝑔−1) =
𝛿𝐺(𝑔) d𝜇(𝑥) is equivalent to d𝜇(𝑔−1 ⋆ 𝑥 ⋆ 𝑔) = 𝛿𝐺(𝑔) d𝜇(𝑥) for 𝐺op. Since 𝜇 is a right Haar measure for
𝐺op, we infer from Remark 1.23 that 𝛿𝐺op(𝑔−1) = 𝛿𝐺(𝑔).

Definition 1.31. A locally compact group 𝐺 with 𝛿𝐺 = 1 is called unimodular.

Example 1.32. The following groups are unimodular.

• Commutative groups.

• Discrete groups: use Example 1.26.
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• Compact groups: indeed, the compact subgroup 𝛿𝐺(𝐺) of ℝ×
>0 ≃ ℝ must be trivial.

The normalized absolute value on a local field 𝐹 is actually the modulus character for the additive
group of 𝐹, as shown below.

Theorem 1.33. For every local field 𝐹, define ‖ ⋅ ‖𝐹 to be the normalized absolute value | ⋅ |𝐹 for non-
archimedean 𝐹, the usual absolute value for 𝐹 = ℝ, and 𝑥 ↦ |𝑥𝑥̄|ℝ for 𝐹 = ℂ. For 𝑡 ∈ 𝐹×, let 𝑚𝑡 be the
automorphism 𝑥 ↦ 𝑡𝑥 for (𝐹, +). Then

𝛿𝑚𝑡 = ‖𝑡‖𝐹.

Proof. Since 𝑚𝑡𝑡′ = 𝑚𝑡′ ∘ 𝑚𝑡, by Proposition 1.25 we have 𝛿𝑚𝑡𝑡′ = 𝛿𝑚𝑡′𝛿𝑚𝑡 . Fix any Haar measure 𝜇 on
𝐹. By definition

𝛿𝑚𝑡 =
𝜇(𝑡𝐾)
𝜇(𝐾)

for every compact subset 𝐾 ⊂ 𝐹. The assertion 𝛿𝑚𝑡 = ‖𝑡‖𝐹 is then evident for 𝐹 = ℝ or ℂ, by taking 𝐾 to
be the unit ball and work with the Lebesgue measure.

Now suppose 𝐹 is non-archimedean and take 𝐾 = 𝔬𝐹. For 𝑡 ∈ 𝔬×𝐹 we have 𝑡𝐾 = 𝐾, thus 𝛿𝑚𝑡 = 1. The
same holds for | ⋅ |𝐹 and both are multiplicative. It remains to show 𝛿𝑚𝜛 = |𝜛|𝐹 = 𝑞−1 for any uniformizer
𝜛 of 𝐹, where 𝑞 ∶= |𝔬𝐹/𝔭𝐹|. But then 𝜇(𝜛𝔬𝐹)/𝜇(𝔬𝐹) = (𝔬𝐹 ∶ 𝜛𝔬𝐹)−1 = 𝑞−1.

1.6 Interlude on analytic manifolds
It is well known that every real Lie group admits an analytic structure. The theory of analytic manifolds
generalizes to any local field 𝐹. For a detailed exposition, we refer to [9, Part II].

In what follows, it suffices to assume that 𝐹 is a complete topological field with respect to some
absolute value |⋅|. Let𝑈 ⊂ 𝐹𝑚 be some open ball. The definition of 𝐹-analytic functions 𝑓 = (𝑓1, … , 𝑓𝑛) ∶
𝑈 → 𝐹𝑛 is standard: we require that each 𝑓𝑖 can be expressed as convergent power series on 𝑈. For any
open subset 𝑈 ⊂ 𝐹𝑚, we say 𝑓 ∶ 𝑈 → 𝐹𝑛 is 𝐹-analytic if 𝑈 can be covered by open balls over which 𝑓
are 𝐹-analytic.

Definition 1.34. An 𝐹-analytic manifold of dimension 𝑛 is a second countable Hausdorff space 𝑋, en-
dowed with an atlas 􏿺(𝑈, 𝜙𝑈) ∶ 𝑈 ∈ 𝒰􏿽, where

• 𝒰 is an open covering of 𝑋;

• for each 𝑈 ∈ 𝒰 , 𝜙𝑈 is a homeomorphism from 𝑈 to an open subset 𝜙𝑈(𝑈) of 𝐹𝑛.

The condition is that for all 𝑈1, 𝑈2 ∈ 𝒰 with 𝑈1 ∩ 𝑈2 ≠ ∅, the transition map

𝜙𝑈2𝜙
−1
𝑈1 ∶ 𝜙𝑈1(𝑈1 ∩ 𝑈2) → 𝜙𝑈2(𝑈1 ∩ 𝑈2)

is 𝐹-analytic.

As in the standard theory of manifolds, the 𝐹-analytic functions on 𝑋 are defined in terms of charts,
and the same applies to morphisms between 𝐹-analytic manifolds; the notion of closed submanifolds is
defined in the usual manner. We can also pass to maximal atlas in the definition. The 𝐹-analytic manifolds
then form a category.

Open subsets of 𝐹-analytic manifolds inherit analytic structures. It is also possible to define 𝐹-analytic
manifolds intrinsically by sheaves.

More importantly, the notion of tangent bundles, cotangent bundles, differential forms and their ex-
terior powers still make sense on an 𝐹-analytic manifold 𝑋. Let 𝑛 = dim𝑋. As in the real case, locally a
differential form on 𝑋 can be expressed as 𝑐(𝑥1, … , 𝑥𝑛) d𝑥1 ∧⋯ ∧ d𝑥𝑛, where 􏿴𝑈, 𝜙𝑈 = (𝑥1, … , 𝑥𝑛)􏿷 is
any chart for 𝑋, and 𝑐 is an analytic function on 𝜙𝑈(𝑈) ⊂ 𝐹𝑛.
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Remark 1.35. When (𝐹, | ⋅ |) is ultrametric, the theory of 𝐹-analytic manifolds is not quite interesting
since they turn out to be totally disconnected. Nevertheless, it is a convenient vehicle for talking about
measures, exponential maps and so forth.

Example 1.36. Let X be an 𝐹-variety of finite type. The set𝑋 of its 𝐹-points acquires a natural Hausdorff
topology (say by reducing to the case to affine varieties, then to affine spaces). If X is smooth, then 𝑋
becomes an 𝐹-analytic manifold. The assignment X ↦ 𝑋 is functorial. The algebraically defined regular
functions, differentials, etc. on X give rise to their 𝐹-analytic avatars on 𝑋. By convention, objects on X
will often carry the adjective algebraic.

Now assume that 𝐹 is local, and fix a Haar measure on 𝐹, denoted abusively by d𝑥 in conformity with
the usual practice. This equips 𝐹𝑛 with a Radon measure for each 𝑛 ≥ 0, and every open subset 𝑈 ⊂ 𝐹𝑛
carries the induced measure.

Let 𝑋 be an 𝐹-analytic manifold of dimension 𝑛. A volume form on 𝑋 is expressed in every chart
(𝑈, 𝜙𝑈) as

|𝜔| = 𝑓(𝑥1, … , 𝑥𝑛)| d𝑥1|⋯ | d𝑥𝑛|

where 𝑓 ∶ 𝑉 ∶= 𝜙𝑈(𝑈) → ℝ>0 is continuous. Define ‖ ⋅ ‖𝐹 ∶ 𝐹 → ℝ≥0 as in Theorem 1.33. A change of
local coordinates 𝑦𝑖 = 𝑦𝑖(𝑥1, … , 𝑥𝑛) (𝑖 = 1, … , 𝑛) transports 𝑓 and has the effect

| d𝑦1|⋯ | d𝑦𝑛| =
􏿑
􏿑
det 􏿶

𝜕𝑦𝑖
𝜕𝑥𝑗

􏿹
𝑖,𝑗

􏿑
􏿑
𝐹

⋅ | d𝑥1|⋯ | d𝑥𝑛|. (1.8)

In other words, |𝜔| is the “absolute value” of a differential form of top degree on𝑋, squared when 𝐹 = ℂ.
Some geometers name these objects as densities.

Now comes integration. The idea is akin to the case of 𝐶∞-manifolds, and we refer to [7, Chapter
16] for a complete exposition for the latter. Let 𝜑 ∈ 𝐶𝑐(𝑋) and choose an atlas {(𝑈, 𝜙𝑈) ∶ 𝑈 ∈ 𝒰} for 𝑋.
In fact, it suffices to take a finite subset of 𝒰 covering Supp(𝜑).

1. By taking a partitions of unity 􏿴𝜓𝑈 ∶ 𝑋 → [0, 1]􏿷
𝑈∈𝒰

(with∑𝑈 𝜓𝑈 = 1 as usual), and replacing 𝜙
by 𝜓𝑈𝜙 for each 𝑈 ∈ 𝒰 , the definition of ∫

𝑋
𝜑|𝜔| reduces to the case that Supp(𝜑) ⊂ 𝑈 for some

𝑈 ∈ 𝒰 .

2. In turn, we are reduced to the integration∫
𝑉⊂𝐹𝑛

𝜑𝑓 d𝑥1⋯ d𝑥𝑛 on some open subset𝑉 ⊂ 𝐹𝑛; this we
can do by the choice of Haar measure on 𝐹. Furthermore, this integral is invariant under 𝐹-analytic
change of coordinates. Indeed, this is a consequence of (1.8) plus the interpretation of ‖ ⋅ ‖𝐹 in
Theorem 1.33.

3. As in the case overℝ, one verifies that∫𝜑|𝜔| does not depend on the choice of charts and partition
of unity.

4. It is routine to show that 𝐼 ∶ 𝜑 ↦ ∫
𝑋
𝜑|𝜔| is a positive linear functional, giving rise to a Radon

measure on 𝑋. The operations of addition, rescaling and group actions on volume forms mirror
those on Radon measures.

Following the standard practice in mathematical analysis, we will often write | d𝑥𝑖| as d𝑥𝑖.
Remark 1.37. In many applications, 𝑋 will come from a smooth 𝐹-variety X or its open subsets, and
|𝜔| will come from a nowhere-vanishing algebraic differential form 𝜔 thereon, say by “taking absolute
values ‖ ⋅ ‖𝐹”; we call such an 𝜔 an algebraic volume form on X.
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Definition 1.38. Let 𝑋 be an 𝐹-analytic manifold, where 𝐹 is a local field. Set

𝐶∞𝑐 (𝑋) ∶=
⎧⎪⎨
⎪⎩
􏿺𝑓 ∈ 𝐶𝑐(𝑋) ∶ infinitely differentiable􏿽 , archimedean 𝐹
􏿺𝑓 ∈ 𝐶𝑐(𝑋) ∶ locally constant􏿽 , non-archimedean 𝐹

where locally constant means that every 𝑥 ∈ 𝑋 admits an open neighborhood𝑈 such that 𝑓|𝑈 is constant.

1.7 More examples
We begin by pinning down the Haar measures on a local field 𝐹, viewed as additive groups.
Archimedean case 𝐹 = ℝ Use the Lebesgue measure.

Archimedean case 𝐹 = ℂ Use twice of the Lebesgue measure.

Non-archimedean case To prescribe a Haar measure on 𝐹, by Theorem 1.20 it suffices to assign a vol-
ume to the compact subring 𝔬𝐹 of integers. A canonical choice is to stipulate that 𝔬𝐹 has volume
1, but this is not always the best recipe.

Example 1.39. If 𝐺 is a Lie group over any local field 𝐹, i.e. a group object in the category of 𝐹-analytic
manifolds, one can construct left (resp. right) Haar measures as follows. Choose a basis 𝜔1, … , 𝜔𝑛 of
the cotangent space of 𝐺 at 1. The cotangent bundle of 𝐺 is trivializable by left (resp. right) translation,
therefore 𝜔1, … , 𝜔𝑛 can be identified as globally defined, left (resp. right) invariant differentials. The
nowhere-vanishing top form 𝜔 ∶= 𝜔1 ∧⋯ ∧ 𝜔𝑛, or more precisely |𝜔|, gives the required measure on
𝐺. The Haar measures constructed in this way are unique up to scaling, as the form 𝜔 (thus |𝜔|) is.

We shall denote the tangent space at 1 ∈ 𝐺 as 𝔤: we have dim𝐹 𝔤 = 𝑛. The automorphism Ad(𝑔) ∶
𝑥 ↦ 𝑔𝑥𝑔−1 induces a linear map on 𝔤 at 1, denoted again by Ad(𝑔).
Proposition 1.40. In the circumstance of Example 1.39, one has

𝛿𝐺(𝑔) = 􏿎 det(Ad(𝑔) ∶ 𝔤 → 𝔤) 􏿎𝐹 , 𝑔 ∈ 𝐺.
Proof. This follows from Theorem 1.33.

Example 1.41. Let 𝐹 be a local field. For the multiplicative group 𝐹×, the algebraic volume form

𝑥−1 d𝑥
defines a Haar measure: it is evidently invariant under multiplications. More generally, let𝐺 = GL(𝑛, 𝐹).
We take 𝜂 to be a translation-invariant nonvanishing algebraic volume form on 𝑀𝑛(𝐹) ≃ 𝐹𝑛2 . The 𝐺-
invariant algebraic volume form

𝜔(𝑔) ∶= (det 𝑔)−𝑛𝜂(𝑔), 𝑔 ∈ 𝐺
induces a left and right Haar measure on 𝐺.
Example 1.42. Here is a non-unimodular group. Let 𝐹 be a local field, and 𝑛 = 𝑛1 + ⋯ + 𝑛2 where
𝑛1, 𝑛2 ∈ ℤ≥1. Consider the group of block upper-triangular matrices

𝑃 ∶= 􏿼𝑔 = 􏿶
𝑔1 𝑥

𝑔2􏿹
∈ GL(𝑛, 𝐹) ∶ 𝑔𝑖 ∈ GL(𝑛𝑖, 𝐹), 𝑥 ∈ 𝑀𝑛1×𝑛2(𝐹)􏿿

the unspecified matrix entries being zero. This is clearly the space of 𝐹-points of an algebraic group P.
The Lie algebra of P is simply ( ∗ ∗∗ ). A routine calculation of block matrices gives

􏿶
𝑔1 𝑥

𝑔2􏿹 􏿶
𝑎 𝑏

𝑑􏿹 􏿶
𝑔1 𝑥

𝑔2􏿹
−1

= 􏿶
𝑎 𝑔1𝑏𝑔−12 +⋯

𝑑 􏿹

where ⋯ is a linear function in 𝑎 and 𝑑. Thus Proposition 1.40 and Theorem 1.33 imply

𝛿𝑃(𝑔) = ‖ det 𝑔1‖
𝑛2
𝐹 ⋅ ‖ det 𝑔2‖

−𝑛1
𝐹 .
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1.8 Homogeneous spaces
Let 𝐺 be a locally compact group. In what follows we consider spaces with right 𝐺-actions. One can
switch to left 𝐺-actions by passing to 𝐺op.

Definition 1.43. A 𝐺-space is a locally compact Hausdorff space 𝑋 equipped with a continuous right
𝐺-action 𝑋 × 𝐺 → 𝑋. If the 𝐺-action is transitive, 𝑋 is called a homogeneous 𝐺-space.

The 𝐺-spaces form a category: the morphisms are continuous 𝐺-equivariant maps.

Example 1.44. Let𝐻 be a closed subgroup of𝐺. The coset space𝐻\𝐺 is locally compact and Hausdorff
by Proposition 1.4, and 𝐺 acts continuously on the right by (𝐻𝑥, 𝑔) ↦ 𝐻𝑥𝑔. This is a homogeneous
𝐺-space.

For a general homogeneous 𝐺-space 𝑋 and 𝑥 ∈ 𝑋, let 𝐺𝑥 ∶= Stab𝐺(𝑥); it is a closed subgroup, and
we have 𝐺𝑥𝑔 = 𝑔−1𝐺𝑥𝑔 for 𝑔 ∈ 𝐺. The orbit map 𝑔 ↦ 𝑥𝑔 at 𝑥 factors through

orb𝑥 ∶ 𝐺𝑥\𝐺 → 𝑋
𝐺𝑥𝑔⟼ 𝑥𝑔,

which is a continuous 𝐺-equivariant bijection. If orb𝑥 is actually an isomorphism, then 𝑋 ≃ 𝐺𝑥\𝐺 in
the category of 𝐺-spaces. This indeed holds under mild conditions on 𝐺, thereby showing that Example
1.44 is the typical sort of homogeneous spaces.

Proposition 1.45. Suppose that𝐺 is second countable as a topological space. Then for any homogeneous
𝐺-space 𝑋 and any 𝑥 ∈ 𝑋, the map orb𝑥 ∶ 𝐺𝑥\𝐺 → 𝑋 is an isomorphism of 𝐺-spaces.

Proof. It suffices to show that orb𝑥 is an open map. Let𝑈 ∋ 1 be any compact neighborhood in𝐺. There
is a sequence 𝑔1, 𝑔2, … ∈ 𝐺 such that 𝐺 = ⋃𝑖≥1𝑈𝑔𝑖, therefore 𝑋 = ⋃𝑖≥1 𝑥𝑈𝑔𝑖. Each 𝑥𝑈𝑔𝑖 is compact,
hence closed in 𝑋.

Baire’s theorem implies that some 𝑥𝑈𝑔𝑖 has nonempty interior. Since 𝑥𝑈𝑔𝑖 ≃ 𝑥𝑈 by right translation,
we obtain an interior point 𝑥ℎ of the subset 𝑥𝑈 of 𝑋, with ℎ ∈ 𝑈. Then 𝑥 is an interior point of 𝑥𝑈ℎ−1,
hence of the bigger subset 𝑥𝑈𝑈−1.

Now consider any open subset 𝑉 ⊂ 𝐺 and 𝑔 ∈ 𝑉. Take a compact neighborhood 𝑈 ∋ 1 such that
𝑈𝑈−1𝑔 ⊂ 𝑉. Then

𝑥𝑔 ∈ 𝑥𝑈𝑈−1𝑔 ⊂ 𝑥𝑉.

As 𝑥 has been shown to an interior point of 𝑥𝑈𝑈−1, so is 𝑥𝑔 in 𝑥𝑈𝑈−1𝑔 ⊂ 𝑥𝑉. Since 𝑔, 𝑉 are arbitrary,
we conclude that 𝑔 ↦ 𝑥𝑔 is an open map. The same holds for orb𝑥 by the definition of quotient topologies.

Corollary 1.46. If𝐺 is an 𝐹-analytic Lie group, where 𝐹 is a local field, then the condition in Proposition
1.45 holds, thus every homogeneous 𝐺-space takes the form 𝐻\𝐺 for some 𝐻.

Proof. The second countability is built into the definitions.

Example 1.47. Take 𝑋 to be the (𝑛 − 1)-sphere 𝕊𝑛−1, on which the orthogonal group O(𝑛,ℝ) acts con-
tinuously (in fact analytically, or even algebraically) and transitively. The action is given by (𝑣, 𝑔) ↦ 𝑣𝑔
where we regard 𝑣 as a row vector. The subgroup SO(𝑛,ℝ) also acts transitively on 𝕊𝑛−1, since every
vector 𝑣 ∈ 𝕊𝑛−1 is fixed by reflections relative to any hyperplane containing 𝑣, which have determinant
−1. This gives

𝕊𝑛−1 ≃ O(𝑛 − 1,ℝ)\O(𝑛,ℝ).

Indeed, the stabilizer group of 𝑣 = (1, 0, … , 0) can be identified with O(𝑛 − 1,ℝ).
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Example 1.48. Another important example of homogeneous space is given by the Siegel upper half
plane. Here it is customary to work with left actions by setting

Sp(2𝑛,ℝ) ∶= 􏿺𝑔 ∈ GL(2𝑛,ℝ) ∶ 𝑔 ⋅ 𝐽 ⋅ 𝑡𝑔 = 𝐽􏿽 , 𝐽 ∶= 􏿶
−1𝑛×𝑛

1𝑛×𝑛 􏿹 .

In a coordinate-free language, Sp(2𝑛,ℝ) is the isometry group of the symplectic form prescribed by 𝐽.
Take 𝑋 to be

ℋ𝑛 ∶= {𝑍 = 𝑅 + 𝑖𝑆 ∈ 𝑀𝑛×𝑛(ℂ) ∶ 𝑅, 𝑆 ∈ 𝑀𝑛×𝑛(ℝ) symmetric, 𝑆 > 0} .

Let Sp(2𝑛,ℝ) act on the left of ℋ𝑛 by

𝑔𝑍 ∶= (𝐴𝑍 + 𝐵)(𝐶𝑍 + 𝐷)−1, 𝑍 ∈ ℋ𝑛,

𝑔 = 􏿶
𝐴 𝐵
𝐶 𝐷􏿹 ∈ Sp(2𝑛,ℝ), 𝐴, 𝐵, 𝐶,𝐷 ∈ 𝑀𝑛×𝑛(ℝ).

This is manifestly an analytic map in (𝑔, 𝑍). One can show that

• this is indeed a transitive group action, and

• the stabilizer group of 𝑍 = 𝑖 ⋅ 1𝑛×𝑛 is the unitary group 𝑈(𝑛).

Therefore ℋ𝑛 ≃ Sp(2𝑛,ℝ)/𝑈(𝑛). When 𝑛 = 1, it reduces to the usual ℋ1 ∶= {𝜏 ∈ ℂ ∶ ℑ(𝜏) > 0} with
SL(2,ℝ) acting by linear fractional transformations.

Example 1.49. Let 𝐹 be a non-archimedean local field, with ring of integers 𝔬𝐹. By convention, we
identify 𝐹𝑛 with the space of row vectors, and let GL(𝑛, 𝐹) act from the right.

A lattice in an 𝑛-dimensional 𝐹-vector space 𝑉 is a free 𝔬𝐹-submodule 𝐿 ⊂ 𝑉 of rank 𝑛 such that
𝐹 ⋅ 𝐿 = 𝑉; the standard example is 𝔬𝑛𝐹 inside 𝐹𝑛. Define the discrete space

𝑋 ∶= {lattices 𝐿 ⊂ 𝑉}

with right GL(𝑉)-action. Exercise: check that the GL(𝑉)-action is continuous and transitive. In fact
StabGL(𝑉)(𝐿) is closed and open in GL(𝑉).

Now identify 𝑉 with 𝐹𝑛 by choosing a basis. The stabilizer of 𝐿 = 𝔬𝑛𝐹 is GL(𝑛, 𝔬𝐹), hence

𝑋 ≃ GL(𝑛, 𝔬𝐹)\GL(𝑛, 𝐹).

Examples 1.47—1.48 are well-known instances of Riemannian symmetric spaces. Loosely speaking,
the space 𝑋 of lattices is in contrast some non-archimedean counterpart of symmetric spaces of the same
type as Example 1.48: it consists of the vertices of the enlarged Bruhat–Tits building of GL(𝑉).

Next, we turn to the measures on the 𝐺-spaces 𝐻\𝐺, where 𝐻 is a closed subgroup of 𝐺.

Lemma 1.50. Fix a right Haar measure 𝜇𝐻 on 𝐻. The map

𝐶𝑐(𝐺)⟶ 𝐶𝑐(𝐻\𝐺)

𝑓⟼ 𝑓♭ ∶= 􏿰𝐻𝑔 ↦ 􏾙
𝐻
𝑓(ℎ𝑔) d𝜇𝐻(ℎ)􏿳

is well-defined, surjective and 𝐺-equivariant with respect to the left 𝐺-actions on 𝐶𝑐(𝐺) and 𝐶𝑐(𝐻\𝐺)
given by 𝑓 ↦ 􏿮𝑔𝑓 ∶ 𝑥 ↦ 𝑓(𝑥𝑔)􏿱. It maps 𝐶𝑐(𝐺)+ onto 𝐶𝑐(𝐻\𝐺)+.
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Proof. The only nontrivial part is the surjectivity. Given 𝑓♭ ∈ 𝐶𝑐(𝐻\𝐺), by Lemma 1.5 there exists a
compact 𝐾 ⊂ 𝐺 such that 𝑔 ↦ 𝑓♭(𝐻𝑔) is supported on 𝐻𝐾. We want to define

𝑓(𝑔) ∶=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑓♭(𝐻𝑔) ⋅ 𝜙(𝑔)
𝜙♭(𝐻𝑔) , 𝑔 ∈ 𝐻𝐾

0, 𝑔 ∉ 𝐻𝐾

for some 𝜙 ∈ 𝐶𝑐(𝐺)+ depending solely on 𝐾. Specifically, take any 𝜙 ∈ 𝐶𝑐(𝐺)+ such that 𝜙|𝐾 > 0.
For any 𝑔 ∈ 𝐻𝐾 we have 𝜙♭(𝑔) > 0 by assumption, hence 𝑓 is a well-defined element in 𝐶𝑐(𝐺). If
𝑓♭ ∈ 𝐶𝑐(𝐻\𝐺)+ then 𝑓 ∈ 𝐶𝑐(𝐺)+.

It is also readily verified that ∫
𝐻
𝑓(ℎ𝑔) d𝜇𝐻(ℎ) = 𝑓♭(𝐻𝑔) for 𝑔 ∈ 𝐻𝐾, and zero for 𝑔 ∉ 𝐻𝐾, this

affords the required preimage of 𝑓♭.

Fix a right Haar measure 𝜇𝐻 on 𝐻 to define 𝑓 ↦ 𝑓♭ as in Lemma 1.50. Every positive Radon
measure 𝜇𝐻\𝐺 on 𝐻\𝐺 induces 𝜇♮𝐻\𝐺 on 𝐺, characterized by ∫

𝐺
𝑓 d𝜇♮𝐻\𝐺 = ∫𝐻\𝐺 𝑓

♭ d𝜇𝐻\𝐺.
Also recall the notion of quasi-invariance from Definition 1.14.

Lemma 1.51. Fix a right Haar measure 𝜇𝐻 on 𝐻 and let 𝜇𝐻\𝐺 be a quasi-invariant positive measure
on 𝐻\𝐺 with eigencharacter 𝜒 ∶ 𝐺 → ℝ×

>0. Then 𝜇♮𝐻\𝐺 is of eigencharacter 𝜒 (resp. 𝛿𝐻(ℎ)) under right
𝐺-action (resp. left 𝐻-action).

Proof. Since 𝑓 ↦ 𝑓♭ respects right 𝐺-translation, the eigencharacter of 𝜇♮𝐻\𝐺 is the same 𝜒. Now let
𝑓 ∈ 𝐶𝑐(𝐺); recall that 𝑓ℎ(𝑔) = 𝑓(ℎ𝑔). By Lemma 1.28, (𝑓ℎ)♭(𝐻𝑔) equals

􏾙
𝐻
𝑓ℎ(𝑘𝑔) d𝜇𝐻(𝑘) = 􏾙

𝐻
𝑓(ℎ𝑘𝑔) d𝜇𝐻(𝑘) = 𝛿𝐻(ℎ)−1􏾙

𝐻
𝑓(ℎ′𝑔) d𝜇𝐻(ℎ′)

which is 𝛿𝐻(ℎ)−1𝑓♭(𝐻𝑔). This implies that ∫
𝐺
𝑓ℎ d𝜇♮𝐻\𝐺 = 𝛿𝐻(ℎ)−1 ∫𝐺 𝑓 d𝜇♮𝐻\𝐺 as asserted.

Theorem 1.52. Let 𝜒 ∶ 𝐺 → ℝ×
>0 be a continuous homomorphism. Then there exists a quasi-invariant

positive measure on 𝐻\𝐺 of eigencharacter 𝜒 if and only if

𝜒|𝐻 = 𝛿𝐻 (𝛿𝐺|𝐻)
−1 .

Moreover, such a quasi-invariant measure is unique up toℝ×
>0 when 𝜒|𝐻 = 𝛿𝐻(𝛿𝐺|𝐻)−1, and every choice

of right Haar measures 𝜇𝐺 (resp. 𝜇𝐻) on 𝐺 (resp. 𝐻) gives rise to such a measure 𝜇𝐻\𝐺, characterized
by

􏾙
𝐺
𝑓(𝑔)𝜒(𝑔) d𝜇𝐺(𝑔) = 􏾙

𝐻\𝐺
􏿶􏾙

𝐻
𝑓(ℎ𝑔) d𝜇𝐻(ℎ)􏿹 d𝜇𝐻\𝐺(𝐻𝑔) (1.9)

where 𝑓 ∈ 𝐶𝑐(𝐺).
Consequently, 𝐺-invariant positive measures exists on 𝐻\𝐺 if and only if 𝛿𝐻 = 𝛿𝐺|𝐻 , in which case

it is unique up to rescaling.

Proof. First, suppose 𝜇𝐻\𝐺 with eigencharacter 𝜒 is given on 𝐻\𝐺. Let us verify 𝜒|𝐻 = 𝛿𝐻 (𝛿𝐺|𝐻)
−1 and

(1.9). Fix a right Haar measure 𝜇𝐻 on 𝐻 to apply Lemma 1.51 to obtain 𝜇♮𝐻\𝐺. Lemma 1.51 implies
𝜇♮𝐻\𝐺 = 𝜒 ⋅ 𝜇𝐺 for a right Haar measure 𝜇𝐺 on 𝐺. Both sides are quasi-invariant under left 𝐻-action:
the eigencharacter of 𝜇♮𝐻\𝐺 is 𝛿𝐻 , whilst that of 𝜒 ⋅ 𝜇𝐺 is (𝜒𝛿𝐺)|𝐻 by Remark 1.15 and Lemma 1.28. The
formula (1.9) is built into our construction.
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Conversely, given 𝜒 with 𝜒|𝐻 = 𝛿𝐻 (𝛿𝐺|𝐻)
−1, fix 𝜇𝐺 and 𝜇𝐻 . We claim that

𝐼 ∶ 𝐶𝑐(𝐻\𝐺)⟶ ℂ

𝑓♭ ⟼􏾙
𝐺
𝑓𝜒 d𝜇𝐺, 𝑓 ↦ 𝑓♭

is well-defined. Granting this, one readily sees that 𝐼 defines a Radon measure 𝜇𝐻\𝐺 by Lemma 1.50.
Furthermore, since 𝑓 ↦ 𝑓♭ respects right 𝐺-action, 𝜇𝐻\𝐺 will have the same eigencharacter as 𝜒𝜇𝐺,
namely 𝜒. What remains to show is that 𝑓♭ = 0 implies ∫

𝐺
𝑓𝜒 d𝜇𝐺 = 0. For any 𝜑 ∈ 𝐶𝑐(𝐺), Fubini’s

theorem entails

0 = 􏾙
𝐺
𝜑(𝑔)𝑓♭(𝐻𝑔)𝜒(𝑔) d𝜇𝐺(𝑔) = 􏾙

𝐺
􏾙
𝐻
𝜑(𝑔)𝑓(ℎ𝑔)𝜒(𝑔) d𝜇𝐻(ℎ) d𝜇𝐺(𝑔)

= 􏾙
𝐻
􏾙
𝐺
𝜒(𝑔′)𝜑(ℎ−1𝑔′)𝑓(𝑔′)𝜒(ℎ)−1𝛿𝐺(ℎ)−1 d𝜇𝐺(𝑔′) d𝜇𝐻(ℎ)

by first swapping the integrals and then substituting 𝑔′ = ℎ𝑔, using d𝜇𝐺(𝑔) = 𝛿𝐺(ℎ)−1 d𝜇𝐺(𝑔′) from
Lemma 1.28. Next, substitute ℎ′ = ℎ−1 into the last integral and use d𝜇𝐻(ℎ) = 𝛿𝐻(ℎ′)−1 d𝜇𝐻(ℎ′) from
Lemma 1.28 to arrive at

0 = 􏾙
𝐻
􏾙
𝐺
𝜒(𝑔′)𝜑(ℎ′𝑔′)𝑓(𝑔′) 𝜒(ℎ′)𝛿𝐺(ℎ′)𝛿𝐻(ℎ′)−1􏻮􏻪􏻪􏻪􏻪􏻪􏻪􏻪􏻪􏻪􏻪􏻪􏻯

=1

d𝜇𝐻(ℎ′) d𝜇𝐺(𝑔′)

= 􏾙
𝐺
𝜑♭(𝐻𝑔′)𝑓(𝑔′)𝜒(𝑔′) d𝜇𝐺(𝑔′).

Select 𝜑 so that 𝜑♭ = 1 on the image of Supp(𝑓) in 𝐻\𝐺 to deduce ∫
𝐺
𝑓𝜒 d𝜇𝐺 = 0.

When 𝐺 is an 𝐹-analytic Lie group and 𝐻 is a Lie subgroup, the results can also be deduced by
considerations of volume forms. We leave this to the curious reader.

Definition 1.53. Denote by 𝜇𝐺/𝜇𝐻 the quasi-invariant measure on 𝐻\𝐺 of eigencharacter 𝜒 determined
by (1.9). To see the benefits of this notation, note that (𝑠𝜇𝐺)/(𝑡𝜇𝐻) = (𝑠/𝑡) ⋅ 𝜇𝐺/𝜇𝐻 for all 𝑠, 𝑡 ∈ ℝ×

>0.

Remark 1.54. For homogeneous spaces under left 𝐺-actions, one uses left Haar measures on𝐻 to define
𝑓 ↦ 𝑓♭, and the condition in Theorem 1.52 becomes

𝜒|𝐻 = (𝛿𝐻)−1 ⋅ 𝛿𝐺|𝐻 .

Indeed, one switches to right 𝐺op-actions and applies the previous result; the eigencharacter 𝜒 is unal-
tered, whereas the modulus characters are replaced by inverses by Proposition 1.30.

2 Convolution
Let 𝐺 be a locally compact group.

2.1 Convolution of functions
Fix a right Haar measure 𝜇 on 𝐺, and define 𝐿𝑝(𝐺) ∶= 𝐿𝑝(𝐺, 𝜇) for all 1 ≤ 𝑝 ≤ ∞. Write ̌𝑓(𝑥) ∶= 𝑓(𝑥−1)
(sometimes as 𝑓∨(𝑥)) for all functions 𝑓 on 𝐺.

Given two functions 𝑓1, 𝑓2 on 𝐺, their convolution is defined as the function

(𝑓1 ⋆ 𝑓2)(𝑥) = 􏾙
𝐺
𝑓1(𝑥𝑦−1)𝑓2(𝑦) d𝜇(𝑦)

= 􏾙
𝐺
𝑓1(𝑦−1)𝑓2(𝑦𝑥) d𝜇(𝑦), 𝑥 ∈ 𝐺

(2.1)
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whenever it converges. We will also consider (2.1) as an element in various 𝐿𝑝-spaces on𝐺, by estimating
‖𝑓1 ⋆ 𝑓2‖𝐿𝑝 in terms of the norms of 𝑓1 and 𝑓2 (see below).
Remark 2.1. If we use left Haar measures instead, or equivalently work in 𝐺op, then (2.1) becomes
∫
𝐺
𝑓1(𝑥𝑦)𝑓2(𝑦−1) d𝜇(𝑦) = ∫𝐺 𝑓1(𝑦)𝑓2(𝑦

−1𝑥) d𝜇(𝑦).

Definition–Proposition 2.2. Let 𝑓1, 𝑓2 ∈ 𝐿1(𝐺). Then 𝑓1 ⋆ 𝑓2 is a well-defined element in 𝐿1(𝐺),
satisfying

‖𝑓1 ⋆ 𝑓2‖𝐿1 ≤ ‖𝑓1‖𝐿1 ⋅ ‖𝑓2‖𝐿1 .
The convolution product makes 𝐿1(𝐺) into a Banach algebra, which is in general non-commutative, non-
unital.

Proof. To show that 𝑓1⋆𝑓2 ∈ 𝐿1(𝐺) is well-defined, evaluate∬
𝐺×𝐺

|𝑓1(𝑥𝑦−1)| ⋅ |𝑓2(𝑦)| d𝜇(𝑦) d𝜇(𝑥) using
Fubini’s theorem to reach the bound ‖𝑓1‖𝐿1 ⋅ ‖𝑓2‖𝐿1 . It is straightforward to verify that

𝑓1 ⋆ (𝑓2 ⋆ 𝑓3) = (𝑓1 ⋆ 𝑓2) ⋆ 𝑓3,
𝑓1 ⋆ (𝑓2 + 𝑓3) = 𝑓1 ⋆ 𝑓2 + 𝑓1 ⋆ 𝑓3,
(𝑓1 + 𝑓2) ⋆ 𝑓3 = 𝑓1 ⋆ 𝑓3 + 𝑓2 ⋆ 𝑓3.

Hence (𝐿1(𝐺), ⋆) is a Banach algebra.

It is important to extend the convolution to more general functions and deduce the corresponding
estimates. Following analysts’ convention, define a bijection 𝑝 ↦ 𝑝′ from [1, +∞] to itself by requiring

1
𝑝 +

1
𝑝′ = 1.

Theorem 2.3 (Minkowski’s inequality). Suppose that 1 ≤ 𝑝 ≤ ∞. Then for 𝑓1 ∈ 𝐿𝑝(𝐺) and 𝑓2 ∈ 𝐿1(𝐺),
(2.1) is well-defined in 𝐿𝑝(𝐺) and we have

􏿎𝑓1 ⋆ 𝑓2􏿎𝐿𝑝 ≤ ‖𝑓1‖𝐿𝑝 ⋅ ‖𝑓2‖𝐿1 .

Proof. The case 𝑝 = 1 has just been addressed, and the case 𝑝 = ∞ is easy. Assume 1 < 𝑝 < ∞. To ease
notations, we may and do assume 𝑓1, 𝑓2 ≥ 0. Apply Hölder’s inequality to the measure 𝑓2(𝑦) d𝜇(𝑦) to
obtain

􏾙
𝐺
𝑓1(𝑥𝑦−1)𝑓2(𝑦) d𝜇(𝑦) ≤ 􏿶􏾙

𝐺
𝑓1(𝑥𝑦−1)𝑝𝑓2(𝑦) d𝜇(𝑦)􏿹

1/𝑝

􏿶􏾙
𝐺
𝑓2(𝑦) d𝜇(𝑦)􏿹

1/𝑝′

.

Hence

‖𝑓1 ⋆ 𝑓2‖𝐿𝑝 ≤ 􏿶‖𝑓2‖
𝑝−1
𝐿1 ⋅􏽪

𝐺×𝐺
𝑓1(𝑥𝑦−1)𝑝𝑓2(𝑦) d𝜇(𝑦) d𝜇(𝑥)􏿹

1/𝑝

= 􏿶‖𝑓2‖
𝑝−1
𝐿1 ⋅􏽪

𝐺×𝐺
𝑓1(𝑥)𝑝𝑓2(𝑦) d𝜇(𝑥) d𝜇(𝑦)􏿹

1/𝑝

= 􏿴‖𝑓2‖
𝑝−1
𝐿1 ⋅ ‖𝑓1‖

𝑝
𝐿𝑝 ⋅ ‖𝑓2‖𝐿1􏿷

1/𝑝
= ‖𝑓1‖𝐿𝑝 ⋅ ‖𝑓2‖𝐿1

where the right invariance of 𝜇 is used.

Theorem 2.4 (Young’s inequality). Suppose that 𝐺 is unimodular, and 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ satisfy

1
𝑞 + 1 =

1
𝑝 +

1
𝑟 .
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Then for all 𝑓1, 𝑓2 such that ̌𝑓1 ∈ 𝐿𝑝(𝐺) and 𝑓2 ∈ 𝐿𝑟(𝐺), the convolution (2.1) is well-defined in 𝐿𝑞(𝐺)
and satisfies

‖𝑓1 ⋆ 𝑓2‖𝐿𝑞 ≤ ‖ ̌𝑓1‖𝐿𝑝 ⋅ ‖𝑓2‖𝐿𝑟 .

Proof. The premises imply

1
𝑟′ +

1
𝑞 +

1
𝑝′ = 1,

𝑝
𝑞 +

𝑝
𝑟′ = 1,

𝑟
𝑞 +

𝑟
𝑝′ = 1.

First, assume 𝑓1, 𝑓2 ≥ 0. Apply Hölder’s inequality with three exponents (𝑟′, 𝑞, 𝑝′) and use the right
invariance of 𝜇 to deduce that

(𝑓1 ⋆ 𝑓2)(𝑥) = 􏾙
𝐺
𝑓1(𝑦−1)𝑓2(𝑦𝑥) d𝜇(𝑦)

= 􏾙
𝐺
𝑓1(𝑦−1)

𝑝
𝑟′ 􏿶𝑓1(𝑦−1)

𝑝
𝑞 𝑓2(𝑦𝑥)

𝑟
𝑞 􏿹 𝑓2(𝑦𝑥)

𝑟
𝑝′ d𝜇(𝑦)

≤ 􏿶􏾙
𝐺
( ̌𝑓1)𝑝 d𝜇􏿹

1/𝑟′

􏿶􏾙
𝐺
𝑓1(𝑦−1)𝑝 ⋅ 𝑓2(𝑦𝑥)𝑟 d𝜇(𝑦)􏿹

1/𝑞

􏿶􏾙
𝐺
𝑓2(𝑦𝑥)𝑟 d𝜇(𝑦)􏿹

1/𝑝′

= 􏿎 ̌𝑓1􏿎
𝑝/𝑟′

𝐿𝑝 􏿶􏾙𝐺
𝑓1(𝑦−1)𝑝𝑓2(𝑦𝑥)𝑟 d𝜇(𝑦)􏿹

1/𝑞

‖𝑓2‖
𝑟/𝑝′
𝐿𝑟 .

It follows from Fubini’s theorem that

‖𝑓1 ⋆ 𝑓2‖𝐿𝑞 ≤ 􏿎 ̌𝑓1􏿎
𝑝/𝑟′

𝐿𝑝 ‖𝑓2‖
𝑟/𝑝′
𝐿𝑟 􏿶􏽪

𝐺×𝐺
𝑓1(𝑦−1)𝑝𝑓2(𝑦𝑥)𝑟 d𝜇(𝑥) d𝜇(𝑦)􏿹

1/𝑞

= 􏿎 ̌𝑓1􏿎
𝑝/𝑟′

𝐿𝑝 ⋅ ‖𝑓2‖
𝑟/𝑝′
𝐿𝑟 ⋅ ‖ ̌𝑓1‖

𝑝/𝑞
𝐿𝑝 ⋅ ‖𝑓2‖

𝑟/𝑞
𝐿𝑟 = ‖ ̌𝑓1‖𝐿𝑝 ⋅ ‖𝑓2‖𝐿𝑟 .

In general, we can work with |𝑓1|, |𝑓2| to reduce to the previous setting.

Proposition 2.5. Suppose 𝐺 is unimodular. If 𝜑 ∈ 𝐶𝑐(𝐺) and 𝑓 ∈ 𝐿𝑟(𝐺) (resp. ̌𝑓 ∈ 𝐿𝑟(𝐺)) with 1 ≤ 𝑟 ≤
∞, then 𝜑 ⋆ 𝑓 (resp. 𝑓 ⋆ 𝜑) is defined by a convergent integral and is a continuous function on 𝐺.

Proof. Recall 𝜑𝑔(𝑥) ∶= 𝜑(𝑔𝑥) and 𝑔𝜑(𝑥) = 𝜑(𝑥𝑔) for 𝑔, 𝑥 ∈ 𝐺. Apply Theorem 2.4 with 𝑞 = ∞ and
1
𝑝 +

1
𝑟 = 1 to see

|(𝜑 ⋆ 𝑓)(𝑔𝑥) − (𝜑 ⋆ 𝑓)(𝑥)| = |((𝜑 − 𝜑𝑔) ⋆ 𝑓)(𝑥)| ≤ 􏿎𝜑∨ − (𝜑𝑔)∨􏿎𝐿𝑝 􏿎𝑓􏿎𝐿𝑟 .

We conclude by noting that

􏿎𝜑∨ − (𝜑𝑔)∨􏿎𝐿𝑝 = 􏿏𝜑
∨ − 𝑔−1(𝜑∨)􏿏

𝐿𝑝
𝑔→1
−−−−→ 0.

The case with ̌𝑓 ∈ 𝐿𝑟(𝐺) is completely analogous.

2.2 Convolution of measures
[ UNDER CONSTRUCTION ]
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3 Continuous representations
3.1 General representations
We will work exclusively with topological vector spaces over ℂ. Some words on Hausdorff property:
a topological vector space 𝑉 is also a topological group under +, therefore 𝑉 being Hausdorff is the
same as {0} = {0}. As easily observed, {0} ⊂ 𝑉 is a closed vector subspace, thus 𝑉/{0} is a Hausdorff
topological vector space. The assignment 𝑉 ↦ 𝑉/{0} is functorial and is the left adjoint of the inclusion
functor

{Hausdorff ones} ↪ {topological vector spaces}.
The main topological vector spaces under consideration are Hausdorff and locally convex; the latter

means that there is a basis of neighborhoods consisting of convex subsets. Alternatively, locally convex
Hausdorff spaces are exactly the topological vector spaces whose topology is defined by a separating
family of semi-norms.

Definition 3.1. Henceforth we denote by TopVect the category of locally convex Hausdorff topological
vector spaces over ℂ. In contrast, Vect will stand for the category of ℂ-vector spaces.

Remark 3.2. The property of being locally convex and Hausdorff is preserved under passing to subspaces
and to quotients by a closed subspace.

The direct sum of locally convex spaces carry a locally convex topology, characterized in categorical
terms. More generally, one can form the inductive limits lim−−→ inside the category of locally convex spaces;
these limits are not necessarily Hausdorff, but one can take quotient by {0} to land in TopVect.

Example 3.3. The Hilbert, Banach, Fréchet and LF-spaces are all in TopVect. Every finite-dimensional
vector space 𝑉 admits a unique structure of Hausdorff topological vector space, namely the usual one
coming from 𝑉 ≃ ℂdim𝑉 , which is also locally convex.

Denote by AutTopVect(𝑉) (resp. AutVect(𝑉)) the group of automorphisms of 𝑉 taken in TopVect
(resp. in the category of ℂ-vector spaces); AutVect(𝑉) is much larger than AutTopVect(𝑉) for infinite-
dimensional 𝑉.

We will consider certain linear left actions of a locally compact group 𝐺 on a topological vector
space 𝑉. This is the same as prescribing a homomorphism 𝜋 ∶ 𝐺 → AutVect(𝑉) of groups; it can also
be recorded by the corresponding “action map” 𝑎 ∶ 𝐺 × 𝑉 → 𝑉 with 𝑎(𝑔, 𝑣) = 𝑔𝑣 = 𝜋(𝑔)𝑣. The issue of
continuity is more delicate.

Definition 3.4. Let 𝐺 be a locally compact group and let 𝑉 in TopVect. A continuous representation
of 𝐺 on the left of 𝑉 is a homomorphism 𝜋 ∶ 𝐺 → AutVect(𝑉) such that the corresponding action map

𝑎 ∶ 𝐺 × 𝑉 ⟶ 𝑉
(𝑔, 𝑣)⟼ 𝑔𝑣 ∶= 𝜋(𝑔)𝑣

is continuous. The case of right actions is defined analogously, with the action written as (𝑣, 𝑔) ↦ 𝑣𝑔
with the property 𝑣(𝑔𝑔′) = (𝑣𝑔)𝑔′, etc.

We denote a continuous representation of 𝐺 as (𝜋, 𝑉), 𝑉 or 𝜋 interchangeably, depending on the
context; call 𝑉 = 𝑉𝜋 the underlying vector space of 𝜋. The shorthand 𝐺-representation will be used
extensively.

Definition 3.5. A morphism of 𝐺-representations 𝜑 ∶ 𝑉1 → 𝑉2 is understood to be continuous homo-
morphism of topological vector spaces such that 𝜑(𝑔𝑣1) = 𝑔𝜑(𝑣1) for all 𝑔 ∈ 𝐺 and 𝑣1 ∈ 𝑉1. This
turns the collection of all 𝐺-representations into a category 𝐺-Rep, so one can talk about isomorphisms,
automorphisms, etc. in the usual manner. The morphisms between 𝐺-representations are also called
intertwining operators.
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Definition 3.6. A subrepresentation of a 𝐺-representation (𝑉, 𝜋) is a closed subspace 𝑉0 ⊂ 𝑉 that is
stable under 𝐺-action. A quotient representation is a quotient space 𝑉̄ = 𝑉/𝑉0 by a subrepresentation
𝑉0, endowed with the quotient topology. In both cases, 𝑉0 and 𝑉̄ are naturally 𝐺-representations.

The𝐺-action on a finite direct sum⨁𝑖∈𝐼 𝑉𝑖 of𝐺-representations {𝑉𝑖}𝑖∈𝐼 makes it into a𝐺-representation.
Call a 𝐺-representation 𝑉 ≠ {0} simple or irreducible if the only subrepresentations (equivalently,

quotient representations) are {0} and 𝑉. Call it indecomposable if 𝑉 = 𝑉1 ⊕𝑉2 with subrepresentations
𝑉1, 𝑉2 ⊂ 𝑉 implies that either 𝑉1 = {0} or 𝑉2 = {0}.

One of the basic goals of representation theory is to classify the irreducible 𝐺-representations under
various constraints.
Remark 3.7. The category 𝐺-Rep is ℂ-linear. In particular, the endomorphisms of a 𝐺-representation 𝑉
form a ℂ-algebra End(𝑉). We caution the reader that, unlike the case of finite-dimensional representa-
tions,𝐺-Rep is NOT an abelian category: already in the case of𝐺 = {1} so that𝐺-Rep = TopVect, every
homomorphism 𝜑 ∶ 𝑉 → 𝑊 of topological vector spaces admits kernel 𝜑−1(0) and cokernel 𝑊/im(𝜑);
by taking injective 𝜑 with dense image, one can show that

ker(𝜑) = 0 = coker(𝜑), coim(𝜑) ≃ 𝑉
𝜑
−→ 𝑊 ≃ im(𝜑)

so that the canonical morphism coim(𝜑) → im(𝜑) is not an isomorphism if 𝜑 is not surjective, contra-
dicting the axioms for abelian categories. Such a 𝜑 ∶ 𝑉 → 𝑊 already exists for Banach spaces.

Let 𝑉 be in TopVect with a given homomorphism 𝜋 ∶ 𝐺 → AutVect(𝑉), so that 𝐺 acts linearly on
the left of 𝑉. Consider the orbit map for every 𝑣 ∈ 𝑉

orb𝑣 ∶ 𝐺⟶ 𝑉
𝑔⟼ 𝑔𝑣.

The following result gives a convenient means to check the continuity of the action map 𝑎 ∶ 𝐺 ×𝑉 → 𝑉
corresponding to 𝜋.

Proposition 3.8. For any 𝑉 in TopVect and a left linear action of 𝐺 on 𝑉 (no continuity condition so
far), denote by 𝜋(𝑔) the map 𝑣 ↦ 𝑔𝑣. The following are equivalent:

1. the action map 𝑎 ∶ 𝐺 × 𝑉 → 𝑉 is continuous, i.e. (𝑉, 𝜋) is a 𝐺-representation;

2. the conditions below hold: (a) there is a dense subspace 𝑉0 ⊂ 𝑉 such that orb𝑣 is continuous for
all 𝑣 ∈ 𝑉0, and (b) for every compact subset 𝐾 ⊂ 𝐺 the family 􏿺𝜋(𝑔) ∶ 𝑔 ∈ 𝐾􏿽 of operators on 𝑉 is
equicontinuous.

Proof. Suppose that 𝑎 ∶ 𝐺 × 𝑉 → 𝑉 is continuous, then orb𝑣 is continuous for all 𝑣 ∈ 𝑉0 ∶= 𝑉. Let
𝐾 ⊂ 𝐺 be compact. Given a neighborhood 𝑊 ∋ 0 in 𝑉, we have to find another neighborhood 𝑈 ∋ 0
so that 𝜋(𝑔)(𝑈) ⊂ 𝑊 for each 𝑔 ∈ 𝐾. By the definition of product topology, for each 𝑔 ∈ 𝐾 there is a
neighborhood𝑈′

𝑔 ×𝑈𝑔 ∋ (𝑔, 0) in 𝐺×𝑉 that is contained in 𝑎−1(𝑊). There is a finite subset 𝑇 ⊂ 𝐾 such
that 𝐾 = ⋃𝑡∈𝑇 𝑈

′
𝑡 ; it remains to take 𝑈 ∶= ⋂𝑡∈𝑇 𝑈𝑡.

Conversely, assume (a) and (b), consider (𝑔, 𝑣) ∈ 𝐺 × 𝑉 and let 𝑊 ∋ 0 be a neighborhood in 𝑉. We
seek a neighborhood 𝑈′ × 𝑈 of (𝑔, 𝑣) such that for all (𝑔′, 𝑣′) ∈ 𝑈′ × 𝑈 we have

𝑎(𝑔′, 𝑣′) − 𝑎(𝑔, 𝑣) = 𝜋(𝑔′)𝑣′ − 𝜋(𝑔)𝑣 ∈ 𝑊.

For any such neighborhoods 𝑈′, 𝑈, use density to pick 𝑣0 ∈ 𝑉0 ∩𝑈 ≠ ∅; then write 𝜋(𝑔)𝑣 − 𝜋(𝑔′)𝑣′ as

􏿴𝜋(𝑔)𝑣 − 𝜋(𝑔)𝑣0􏿷 + 􏿴𝜋(𝑔)𝑣0 − 𝜋(𝑔′)𝑣0􏿷 + 􏿴𝜋(𝑔′)𝑣0 − 𝜋(𝑔′)𝑣′􏿷 .

Assume 𝑈′ has compact closure, then 𝜋(𝑔)𝑣 − 𝜋(𝑔)𝑣0 and 𝜋(𝑔′)𝑣0 − 𝜋(𝑔′)𝑣′ approaches zero when 𝑈
shrinks, by applying (b) to 𝐾 ∶= 𝑈′. Once 𝑣0 ∈ 𝑉0 ∩ 𝑈 is chosen, we can further shrink 𝑈′ to make
𝜋(𝑔)𝑣0 − 𝜋(𝑔′)𝑣0 arbitrarily small. This concludes the proof.
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Corollary 3.9. Let (𝑉, ‖ ⋅ ‖) be a Banach space and a left action of 𝐺 on 𝑉 (no continuity conditions so
far). Then𝑉 is a𝐺-representation if and only if 𝜋(𝑔) is continuous for every 𝑔 and the orbit map 𝑔 ↦ 𝑔𝑣
is continuous for every 𝑣 ∈ 𝑉.

Proof. It suffices to prove the “if” part. Take 𝑉0 = 𝑉 in Proposition 3.8 and check the equicontinuity of
{𝜋(𝑔) ∶ 𝑔 ∈ 𝐾} ⊂ AutTopVect(𝑉) for every compact 𝐾 ⊂ 𝐺. More precisely, by the uniform boundedness
principle of Banach–Steinhaus, it suffices to notice that the continuity of orbit maps implies

sup
𝑔∈𝐾

􏿎𝜋(𝑔)𝑣􏿎 < +∞

for every 𝑣 ∈ 𝑉, which in turn implies the asserted equicontinuity.

Example 3.10. Suppose that 𝑋 is a locally compact Hausdorff space with a continuous right 𝐺-action.
Equip 𝐶(𝑋) ∶= {𝑓 ∶ 𝑋 → ℂ, continuous} with the topology defined by semi-norms ‖ ⋅ ‖∞,Ω ∶= supΩ ‖ ⋅ ‖
where Ω ranges over compact subsets of 𝑋. This makes 𝐶(𝑋) into a member of TopVect. Let 𝐺 act on
the left of 𝐶(𝑋) by

𝑔𝑓 ∶= 𝑔𝑓 = [𝑥 ↦ 𝑓(𝑥𝑔)], 𝑓 ∈ 𝐶(𝑋), 𝑔 ∈ 𝐺.

Let us verify that 𝐶(𝑋) is a 𝐺-representation. It has been observed that 𝑔(𝑔′𝑓) = (𝑔𝑔′)𝑓. Apply 3.8 with
𝑉 = 𝑉0 as follows.

• For every chosen 𝑓 ∈ 𝐶(𝑋), we contend that 𝑔 ↦ 𝑔𝑓 is a continuous map from 𝐺 to 𝐶(𝑋).
Continuity can be checked just at 𝑔 = 1. This amounts to showing that for every compact Ω ⊂ 𝑋
and every 𝜖 > 0, there exists a neighborhood 𝑈 ∋ 1 in 𝐺 such that sup𝑥∈Ω |𝑓(𝑥𝑔) − 𝑓(𝑥)| < 𝜖
whenever 𝑔 ∈ 𝑈. Indeed, for every 𝑥 ∈ 𝑋 there exist open 𝑈𝑥 ∋ 1 and 𝑊𝑥 ∋ 𝑥 in 𝐺 and 𝑋, such
that

(𝑔, 𝑦) ∈ 𝑈𝑥 ×𝑊𝑥 ⟹ |𝑓(𝑦𝑔) − 𝑓(𝑦)| < 𝜖.

Now take a finite subcover of the open covering {𝑊𝑥}𝑥∈Ω of Ω, and take 𝑈 to be the finite inter-
section of the corresponding 𝑈𝑥.

• Fix a compact 𝐾 ⊂ 𝐺. For every 𝑔 ∈ 𝐾 and every compact Ω ⊂ 𝑋 we know Ω𝐾 is compact, and

‖𝜋(𝑔)𝑓1 − 𝜋(𝑔)𝑓2‖Ω,∞ = sup
𝑥∈Ω

|𝑓1(𝑥𝑔) − 𝑓2(𝑥𝑔)| ≤ ‖𝑓1 − 𝑓2‖Ω𝐾,∞.

This shows the equicontinuity of the operators {𝜋(𝑔) ∶ 𝑔 ∈ 𝐾}.

Remark 3.11. When 𝑋 is second countable, an increasing countable sequence of Ω exhausts 𝑋, and it
suffices to treat the corresponding semi-norms. In this case𝐶(𝑋) turns out to be Fréchet. If𝑋 is compact,
it suffices to take Ω = 𝑋 and 𝑋 is a Banach space.

Example 3.12. Assume 𝑋 is second countable. The same result in 3.10 holds for 𝐺 acting on 𝐶𝑐(𝑋),
where

𝐶𝑐(𝑋) = lim−−→
Ω
𝐶𝑐(𝑋,Ω)

is equipped with the inductive limit topology, where

• Ω ⊂ 𝑋 ranges over the compact subsets, and

• 𝐶𝑐(𝑋,Ω) ∶= 􏿺𝑓 ∈ 𝐶𝑐(𝑋) ∶ Supp(𝑓) ⊂ Ω􏿽, topologized by the sup-norm ‖ ⋅ ‖∞.

22



Then 𝐶𝑐(𝑋) with 𝑔𝑓(𝑥) = 𝑓(𝑥𝑔) is also a 𝐺-representation on an LF-space, and this coincides with 𝐶(𝑋)
when 𝑋 is compact.

We check the continuity of 𝐺 × 𝐶𝑐(𝑋) → 𝐶𝑐(𝑋) directly. Since 𝐺 is locally compact, it suffices to
show the continuity of 𝐾 × 𝐶𝑐(𝑋) → 𝐶𝑐(𝑋) a given compact subset 𝐾 ⊂ 𝐺. By the definition of the
topology of lim−−→, we further reduce to the composite

𝐾 × 𝐶𝑐(𝑋,Ω) → 𝐶𝑐(𝑋,Ω ⋅ 𝐾) ↪ 𝐶𝑐(𝑋)

whereΩ ⊂ 𝑋 is any compact. The continuity of↪ is evident, whilst that of𝐾×𝐶𝑐(𝑋,Ω) → 𝐶𝑐(𝑋,Ω⋅𝐾)
is straightforward to check, as everything is compact.

Example 3.13. Let 𝑋 be a locally compact Hausdorff space, endowed with a continuous right 𝐺-action.
For simplicity, we assume that 𝑋 admits a 𝐺-invariant Radon positive measure 𝜇; this is indeed the case
when 𝑋 is a homogeneous 𝐺-space isomorphic to 𝐻\𝐺 satisfying 𝛿𝐺|𝐻 = 𝛿𝐻 , by 1.52.

For every 1 ≤ 𝑝 ≤ ∞, we have 𝐺 acting on the Banach space 𝑉 ∶= 𝐿𝑝(𝑋) by 𝑔𝑓 = 𝑔𝑓 ∶ 𝑥 ↦ 𝑓(𝑥𝑔) as
usual. This makes sense if 𝑓 ∈ 𝐶𝑐(𝑋), and ‖𝑔𝑓‖𝑝 = ‖𝑓‖𝑝 for all 𝑔 ∈ 𝐺. Therefore the action extends to
all 𝑓 ∈ 𝐿𝑝(𝑋) by an approximation argument.

Claim: 𝐿𝑝(𝑋) is a 𝐺-representation. We apply 3.8 with 𝑉0 = 𝐶𝑐(𝑋) as follows. The condition (b)
is satisfied since 𝜋(𝑔) preserves ‖ ⋅ ‖𝑝, hence equicontinuous. It remains to check (a) that 𝑔 ↦ 𝑔𝑓 is
continuous for every given 𝑓 ∈ 𝐶𝑐(𝑋), i.e. for every 𝜖 > 0, there exists a neighborhood 𝑈 ∋ 1 in 𝐺 such
that 𝑔 ∈ 𝑈 ⟹ ‖𝑔𝑓 − 𝑓‖𝑝 < 𝜖.

Since Supp(𝑓) is compact, there exists a neighborhood 𝑈 ∋ 1 such that for all 𝑔 ∈ 𝑈,

|𝑓(𝑥𝑔) − 𝑓(𝑥)| < 𝜖𝜇(Supp(𝑓))−1/𝑝 for all 𝑥.

Then ‖𝑔𝑓 − 𝑓‖𝑝 ≤ 𝜖 as required; note that the argument also works for 𝑝 = ∞, and in that case we do not
need measures.

Representations on function spaces arising from𝐺-actions on𝑋, such as the examples 3.10, 3.12 and
3.13 are called regular representations. The most important case is 𝑋 = 𝐺. When 𝑋 = 𝐺 is finite, we
revert to the usual regular representation on the finite-dimensional space ℂ[𝐺] = Maps(𝐺, ℂ).

We end these discussions by more terminologies.

Definition 3.14. Let (𝜋, 𝑉) be a𝐺-representation. If𝑉 is a Hilbert (resp. Banach, Fréchet) space, we say
that (𝜋, 𝑉) is a Hilbert (resp. Banach, Fréchet) representation. In each case, such representations form a
full subcategory of 𝐺-Rep.

3.2 Matrix coefficients
Definition 3.15. Let (𝜋, 𝑉) be in 𝐺-Rep. Denote by 𝑉∗ ∶= HomTopVect(𝑉, ℂ) the topological dual of
𝑉. It is customary to write ⟨𝜆, 𝑣⟩ ∶= 𝜆(𝑣) for 𝜆 ∈ 𝑉∗, 𝑣 ∈ 𝑉. Given 𝜆, 𝑣, the corresponding matrix
coefficient is the continuous function

𝑐𝑣⊗𝜆 ∶ 𝐺⟶ ℂ
𝑔⟼ 􏾉𝜆,𝜋(𝑔)𝑣􏽼 .

Matrix coefficients is bilinear in 𝜆 and 𝑣, which justifies the tensor notation.

Remark 3.16. Suppose 𝑉 ≠ {0}. The Hahn–Banach theorem implies that for every 𝑣 ≠ 0 there exists 𝜆
such that 𝑐𝑣⊗𝜆(1) = ⟨𝜆, 𝑣⟩ ≠ 0.
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We can let𝐺 act on the left of𝑉∗ by the contragredient: 𝜆 ↦ 𝜋̌(𝑔) ∶= 𝜆∘𝜋(𝑔−1). However, the choice
of topological structure on 𝑉∗ is a subtle issue, and in practice it is necessary to pass to some subspace
of 𝑉∗ to obtain interesting continuous representations. At present, we do not put any extra structure on
𝑉∗.

A Hilbert representation (𝜋, 𝑉) is called unitary if 𝜋(𝑔) is a unitary operator for all 𝑔 ∈ 𝐺. We will
say more about this in 4.1.
Remark 3.17. By Riesz’s theorem, the topological dual of a Hilbert space (𝑉, (⋅|⋅)𝑉) is its Hermitian
conjugate 𝑉̄: it is the same space with the new scalar multiplication (𝑧, 𝑣) ↦ 𝑧̄𝑣 for 𝑧 ∈ ℂ, and becomes
a Hilbert space with (𝑣|𝑤)𝑉̄ = (𝑤|𝑣)𝑉 = (𝑣|𝑤)𝑉 . Every 𝑤̄ ∈ 𝑉̄ corresponds to the linear functional
𝑣 ↦ (𝑣|𝑤)𝑉 .

The contragredient representation is therefore given by

𝜋̌(𝑔) ∶= ∗𝜋(𝑔)−1 ∶ 𝑉̄ → 𝑉̄

where ∗(⋯) denotes the Hermitian adjoint. It satisfies (𝜋̌(𝑔)𝑤|𝜋(𝑔)𝑣) = (𝑤|𝑣).
When 𝜋 is unitary, the contragredient reduces 𝜋̌(𝑔) = 𝜋(𝑔); to emphasize the complex conjugation,

we will also write (𝜋̄, 𝑉̄) = (𝜋̌, 𝑉̄) in the unitary case, and it is again unitary.
Therefore 3.15 specializes as follows.

Definition 3.18. Let (𝜋, 𝑉) be a Hilbert representation of 𝐺. For 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑉̄, the corresponding
matrix coefficient is the continuous map

𝑐𝑣⊗𝑤 ∶ 𝐺⟶ ℂ
𝑔⟼ (𝜋(𝑔)𝑣|𝑤)𝑉

where (⋅|⋅) is the Hermitian form on 𝑉.

Lemma 3.19. Let (𝜋, 𝑉) be a Hilbert representation of 𝐺. The matrix coefficients map 𝑤⊗ 𝑣 ↦ 𝑐𝑣⊗𝑤 is
bilinear from 𝑉 × 𝑉̄. Moreover:

𝑐𝑣⊗𝑤(𝑏−1𝑥𝑎) = 𝑐𝜋(𝑎)𝑣⊗𝜋̌(𝑏)𝑤(𝑥), (𝑎, 𝑏) ∈ 𝐺 × 𝐺, 𝑥 ∈ 𝐺, (3.1)

𝑐𝑣⊗𝑤(𝑥) = 𝑐𝑤⊗𝑣(𝑥−1), 𝑣, 𝑤 ∈ 𝑉, 𝑥 ∈ 𝐺, if 𝜋 is unitary; (3.2)

Here we write 𝜋̄ for the representation 𝜋 of 𝐺 on 𝑉̄, emphasizing that 𝑐𝑣⊗𝑤 is conjugate-linear in 𝑤. It
is also additive under orthogonal direct sum 𝑉1 ⊕ 𝑉2 of Hilbert representations, namely

𝑐(𝑣,𝑣′)⊗(𝑤,𝑤′)(𝑥) = 𝑐𝑣⊗𝑤(𝑥) + 𝑐𝑣′⊗𝑤′(𝑥) (3.3)

with 𝑥 ∈ 𝐺, 𝑣, 𝑤 ∈ 𝑉1 and 𝑣′, 𝑤′ ∈ 𝑉2.

Proof. When 𝜋 is unitary, the identity (𝜋(𝑥)𝑤|𝑣) = (𝑤|𝜋(𝑥−1)𝑣) = (𝜋(𝑥−1)𝑣|𝑤) proves (3.2). Next,

􏿴𝜋(𝑏−1)𝜋(𝑥)𝜋(𝑎)𝑣|𝑤􏿷 = (𝜋(𝑥)𝜋(𝑎)𝑣|𝜋̌(𝑏)𝑤)

translates into (3.1).

3.3 Vector-valued integrals
Vector-valued integrals are immensely useful for studying continuous representations. We shall consider
a weak version thereof, called weak integrals or Gelfand–Pettis integrals. The canon is surely Bourbaki
[3]; shorter surveys include [8, 3.26 — 3.29] and [4].
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Definition 3.20. Let 𝑋 be a locally compact Hausdorff space and 𝜇 a positive Radon measure thereon.
Let 𝑉 be in TopVect, and 𝑓 ∶ 𝑋 → 𝑉 is a function such that 𝜆 ∘ 𝑓 ∶ 𝑋 → ℂ is 𝜇-measurable for all 𝜆
in the continuous dual 𝑉∗. Suppose that 𝜆 ∘ 𝑓 is 𝜇-integrable for all 𝜆, define the integral ∫

𝑋
𝑓 d𝜇 as the

element
𝜆⟼􏾙

𝑋
􏾉𝜆, 𝑓(𝑥)􏽼 d𝜇(𝑥), 𝜆 ∈ 𝑉∗

in HomVect(𝑉∗, ℂ), i.e. the algebraic dual of 𝑉∗.

Since we are working with locally convex Hausdorff spaces, 𝑉∗ separates points on 𝑉 by the Hahn–
Banach theorem, and the natural map 𝑉 → HomVect(𝑉∗, ℂ) is injective. Therefore it makes sense to ask
if ∫

𝑋
𝑓 d𝜇 exists inside 𝑉, which will then take a definite value, called the weak integral of 𝑓 d𝜇.

When𝑉 is a Banach space, the Bochner or the “strong” integrals are instances of weak integrals. Due
to its “weak” definition, Gelfand–Pettis integrals satisfy agreeable functorial properties, as illustrated
below.

Proposition 3.21. Let 𝑇 ∶ 𝑉 → 𝑊 be a morphism in TopVect. If ∫
𝑋
𝑓 d𝜇 in the situation of 3.20 exists,

then so does ∫
𝑋
𝑇𝑓 d𝜇 and we have ∫

𝑋
𝑇𝑓 d𝜇 = 𝑇 ∫

𝑋
𝑓 d𝜇. Here we identify 𝑇 with the natural linear map

HomVect(𝑉∗, ℂ) → HomVect(𝑊∗, ℂ) it induces.

Proof. By definition, 𝑇 ∫
𝑋
𝑓 d𝜇 is the linear functional on𝑊∗ mapping each 𝜆 ∈ 𝑊∗ to 􏾊𝜆 ∘ 𝑇, ∫𝑋 𝑓 d𝜇􏽽,

which is nothing but ∫
𝑋
􏾉𝜆, 𝑇𝑓􏽼 d𝜇. Also, 􏾉𝜆, 𝑇𝑓􏽼 = 􏾉𝜆 ∘ 𝑇, 𝑓􏽼 is 𝜇-integrable by assumptions.

A Radon measure on 𝑋 is called finite if the integration functional 𝐼 ∶ 𝐶𝑐(𝑋) → ℂ is continuous for
the 𝐿∞-norm. Denote the support of a measure 𝜇 by Supp(𝜇).

Theorem 3.22. Suppose that 𝜇 is finite in the situation of 3.20. If 𝑓(Supp(𝜇)) is contained in a convex,
balanced, bounded and complete subset 𝐵 ⊂ 𝑉, then 𝜆 ∘ 𝑓 is 𝜇-integrable for all 𝜆 ∈ 𝑉∗ and

􏾙
𝑋
𝑓 d𝜇 ∈ 𝜇(𝑋) ⋅ 𝐵 ⊂ 𝑉.

Proof. This is in [3, §1.2, Proposition 8].

Remark 3.23. Most often we encounter the case of

• 𝑓 ∶ 𝑋 → 𝑉 is continuous,

• 𝜇 has compact support.

In particular, 𝑓(Supp(𝜇)) is compact. In this case, the premises in 3.22 are met whenever the convex hulls
of compact subsets in 𝑉 have compact closures. The latter property holds for quasi-complete spaces —
see [4]. A topological vector space is called quasi-complete if every bounded closed subset is complete.
Completeness implies quasi-completeness as expected. In particular, 3.22 applies to Fréchet spaces in
this case.

Another example of quasi-complete spaces are the continuous duals of barreled spaces, endowed
with the topology of pointwise convergence. For instance, Fréchet spaces and LF spaces are all barreled.

Proposition 3.24. In the circumstance of 3.22, suppose that ‖ ⋅ ‖ ∶ 𝑉 → ℝ≥0 is a continuous semi-norm
on 𝑉. Then

􏿑􏾙
𝑋
𝑓 d𝜇􏿑 ≤ 􏾙

𝑋
‖𝑓‖ d𝜇.

Proof. Take 𝑣 = ∫
𝑋
𝑓 d𝜇 ∈ 𝑉. There exists 𝜆 ∈ 𝑉∗ with ⟨𝜆, 𝑣⟩ = ‖𝑣‖ and | ⟨𝜆, 𝑤⟩ | ≤ ‖𝑤‖ for all 𝑤 ∈ 𝑉

by Hahn–Banach theorem. Insert this 𝜆 into the characterization of ∫
𝑋
𝑓 d𝜇.
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3.4 Action of convolution algebra
In what follows, we will often write the integration of a measure 𝑓 on a locally compact Hausdorff space
𝑋 as ∫

𝑥∈𝑋
𝑓(𝑥), omitting the useless d𝑥. It is convenient to adopt the notations for functions: given an

isomorphism Φ ∶ 𝑌 → 𝑋, write 𝑓 ∘ Φ for the measure transported to 𝑌, so that ∫
𝑌
𝑓 ∘ Φ = ∫

𝑋
𝑓 holds for

tautological reasons.
Let 𝐺 be a locally compact group. Define the following space of Radon measures on 𝐺

ℳ (𝐺) ∶= {finite complex Radon measures on 𝐺} ,
ℳ𝑐(𝐺) ∶= 􏿺 𝑓 ∈ ℳ (𝐺) ∶ Supp(𝑓) is compact􏿽 ,
̃ℳ (𝐺) ∶= 􏿺 𝑓 ∈ ℳ (𝐺) ∶ 𝑓 ≪ any right Haar measure􏿽 ,
̃ℳ𝑐(𝐺) ∶= ̃ℳ (𝐺) ∩ℳ𝑐(𝐺).

If a right Haar measure 𝜇 on 𝐺 is chosen, then 𝐿1(𝐺) d𝜇 = ̃ℳ (𝐺).
Recall that a subset of 𝐺 is called symmetric if it is invariant under 𝑔 ↦ 𝑔−1. Likewise, we say a

function or a measure on 𝐺 is symmetric if it has the same invariance. A topological group always has a
symmetric neighborhood basis at 1: replacing each neighborhood 𝑈 ∋ 1 by 𝑈 ∩𝑈−1 ∋ 1 suffices.

Definition 3.25. An approximate identity is a symmetric neighborhood basis 𝔑 at 1 ∈ 𝐺 together with a
family 𝜑𝑈 ∈ ̃ℳ𝑐(𝐺), where 𝑈 ranges over 𝔑, such that for all 𝑈 ∈ 𝔑,

• 𝜑𝑈 is positive of the form 𝜙𝑈 d𝜇 where 𝜙𝑈 ∈ 𝐶𝑐(𝐺) and 𝜇 is a right Haar measure;

• ∫
𝐺
𝜑𝑈 = 1;

• Supp(𝜑𝑈) ⊂ 𝑈, 𝜑𝑈(𝑔) = 𝜑𝑈(𝑔−1).

When 𝔑 is countable, an approximate identity can be conveniently described as a sequence 𝜑1, 𝜑2, … in
̃ℳ𝑐(𝐺) with each 𝜑𝑖 symmetric and positive, and Supp(𝜑𝑖) shrinks to {1} as 𝔑 does.

Proposition 3.26. For every symmetric neighborhood basis 𝔑 at 1 ∈ 𝐺, there exists approximate iden-
tities supported on 𝔑.

Proof. Given 𝑈 ∈ 𝔑, use Urysohn’s lemma to construct 𝜑𝑈 . We can force 𝜑𝑈(𝑔) = 𝜑𝑈(𝑔−1) by averag-
ing.

Definition 3.27. Let (𝜋, 𝑉) be a continuous representation of 𝐺 on a quasi-complete space. Let ̃ℳ𝑐(𝐺)
act on the left of 𝑉 by 𝑉-valued integrals

𝜋(𝜑)𝑣 = 􏾙
𝐺
𝜑(𝑔)𝜋(𝑔)𝑣, 𝑣 ∈ 𝑉, 𝜑 ∈ ̃ℳ𝑐(𝐺),

whose existence is guaranteed by 3.22.

One should imagine that 𝜋(𝑔) = 𝜋(𝛿𝑔) where 𝛿𝑔 stands for the Dirac measure at 𝑔.
In general,

𝜋(ℎ−1)𝜋(𝑓)𝜋(𝑔−1) = 𝜋 􏿴ℎ𝑓𝑔􏿷 , ℎ𝑓𝑔(𝑥) = 𝑓(ℎ𝑥𝑔), (3.4)

where the left/right translation should be understood in terms of measures. The operation of bilateral
translations preserves the spaces ℳ(𝐺), etc.
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Lemma 3.28. This makes 𝑉 into an ̃ℳ𝑐(𝐺)-algebra, namely

𝜋(𝜑) ∈ Endℂ(𝑉),
𝜋(𝑎𝜑1 + 𝑏𝜑2)𝑣 = 𝑎𝜋(𝜑1)𝑣 + 𝑏𝜋(𝜑2)𝑣,

𝜋(𝜑1 ⋆ 𝜑2) = 𝜋(𝜑1)𝜋(𝜑2)𝑣

for all 𝜑1, 𝜑2 ∈ ̃ℳ𝑐(𝐺) and 𝑎, 𝑏 ∈ ℂ. Furthermore, if (𝜑𝑈)𝑈∈𝔑 is an approximate identity, then

lim
𝑈∈𝔑

𝜋(𝜑𝑈)𝑣 = 𝑣, 𝑣 ∈ 𝑉

in the sense of filter bases.

Proof. The linearity is clear. As for the identity concerning convolution, consider 𝑣 ∈ 𝑉 and 𝜆 ∈ 𝑉∗.
The definitions of convolution and Gelfand–Pettis integrals lead to

􏾉𝜆, 𝜋(𝜑1 ⋆ 𝜑2)𝑣􏽼 = 􏾙
(𝑎,𝑏)∈𝐺×𝐺

⟨𝜆, 𝜋(𝑎𝑏)𝑣⟩ 𝜑1(𝑎)𝜑2(𝑏).

On the other hand, by 3.21 we have

􏾉𝜆, 𝜋(𝜑1)𝜋(𝜑2)𝑣􏽼 = 􏾙
𝑎∈𝐺

􏾉𝜆, 𝜋(𝑎)𝜋(𝜑2)𝑣􏽼 𝜑1(𝑎) = 􏾙
𝑎∈𝐺

􏾙
𝑏∈𝐺

⟨𝜆, 𝜋(𝑎)𝜋(𝑏)𝑣⟩ 𝜑1(𝑎)𝜑2(𝑏).

Since 𝜋(𝑎𝑏) = 𝜋(𝑎)𝜋(𝑏) and 𝜆 is arbitrary, this implies that 𝜋(𝜑1 ⋆ 𝜑2)𝑣 = 𝜋(𝜑1)𝜋(𝜑2)𝑣.
For the convergence, it suffices to show for every continuous semi-norm ‖ ⋅ ‖ that

lim
𝑈
‖𝜋(𝜑𝑈)𝑣 − 𝑣‖ = 0

since 𝑉 is locally convex. By 3.24, we have

‖𝜋(𝜑𝑈)𝑣 − 𝑣‖ = 􏿑􏾙
𝐺
𝜑𝑈(𝑔)(𝜋(𝑔)𝑣 − 𝑣)􏿑

≤ 􏾙
𝐺
𝜑𝑈(𝑔)‖𝜋(𝑔)𝑣 − 𝑣‖.

Given 𝜖 > 0, for sufficiently small 𝑈 we have ‖𝜋(𝑔)𝑣 − 𝑣‖ < 𝜖 when 𝑔 ∈ 𝑈. Hence the last expression is
bounded by 𝜖∫

𝐺
𝜑𝑈 = 𝜖.

Lemma 3.29. The subspace 𝜋 􏿴 ̃ℳ𝑐(𝐺)􏿷𝑉 of 𝑉 is 𝐺-stable and dense. In fact, the subspace spanned by
𝜋(𝜑𝑈)𝑉 is already dense, when 𝜑𝑈 runs over an approximate identity (recall 3.25).

Proof. Apply 3.28. Note that ̃ℳ𝑐(𝐺) is stable under (3.4), thus 𝜋 􏿴 ̃ℳ𝑐(𝐺)􏿷𝑉 is 𝐺-stable as well.

3.5 Smooth vectors: archimedean case
Let 𝐺 be a locally compact group and (𝜋, 𝑉) be a 𝐺-representation. The orbit map orb𝑣 ∶ 𝑔 ↦ 𝑔𝑣 can
also be used to define representation-theoretic properties of vectors 𝑣 ∈ 𝑉.

Definition 3.30. Let P stand for a property of continuous functions 𝐺 → 𝑉. For a 𝐺-representation 𝑉
and 𝑣 ∈ 𝑉, we say that 𝑣 has the property P if orb𝑣 ∶ 𝐺 → 𝑉 has.

Since 𝑣 ↦ orb𝑣 is a ℂ-linear map from 𝑉 to Maps(𝐺,𝑉), if the functions with property P form a
vector space, so are the vectors with property P.
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In particular, when 𝐺 is an analytic Lie group over a local field 𝐹, we can talk about 𝐶∞ (infinitely
differentiable) and𝐶𝜔 (analytic) vectors in a𝐺-representation, thereby bringing the smooth structure into
the picture.

Definition 3.31. The 𝐶∞-vectors in 𝑉 are called smooth vectors. They form a subspace

𝑉∞ ∶= {𝑣 ∈ 𝑉 ∶ smooth vector} .

In the next few sections we will mainly be interested in the case of archimedean 𝐹. The same definition
pertains to non-archimedean case as well (see 1.38), but it has a quite different flavor. Note that for
archimedean 𝐹, one can actually talk about 𝐶𝑘-vectors where 𝑘 ∈ {0, 1, … ,∞,𝜔}.

In what follows we consider only 𝐹 = ℝ. The case of ℂ follows by “Weil restriction”, namely one
can view a ℂ-group as an ℝ-group by dropping its complex structure.

For a Lie group𝐺 over 𝐹 = ℝ, let 𝔤 ∶= Lie(𝐺)⊗ℝℂ denote its complexified Lie algebra, and let𝑈(𝔤)
designate the universal enveloping algebra of 𝔤.

Definition 3.32. Suppose that 𝐺 is a Lie group over ℝ. Let (𝜋, 𝑉) be in 𝐺-Rep. Define the eponymous
action 𝜋 of the Lie algebra 𝔤 by

𝜋(𝑋)𝑣 ∶= d
d𝑡 |𝑡=0

𝜋(𝑔(𝑡))𝑣 = lim
ℎ→0

𝜋(𝑔(ℎ))𝑣 − 𝜋(𝑔(0))𝑣
ℎ , 𝑋 ∈ 𝔤

for every 𝑣 ∈ 𝑉∞, where 𝑔 is any differentiable curve in 𝐺 with 𝑔(0) = 1 and 𝑔′(0) = 𝑣; it is customary
to take 𝑔(𝑡) = exp(𝑡𝑋).

Lemma 3.33. The operators 𝜋(𝑋) above yield a homomorphism of ℂ-algebras

𝑈(𝔤) → Endℂ(𝑉∞).

Proof. In other words (𝑋, 𝑣) ↦ 𝜋(𝑋)𝑣 is a representation of the Lie algebra 𝔤. It boils down to check
that 𝜋(𝑋)(𝜋(𝑌)𝑣) − 𝜋(𝑌)(𝜋(𝑋)𝑣) = 𝜋([𝑋, 𝑌])𝑣 for all 𝑣 ∈ 𝑉∞ and 𝑋,𝑌 ∈ 𝔤. This reduces the to basic
fact that

exp(𝑡𝑋) exp(𝑠𝑌) = exp 􏿵𝑡𝑋 + 𝑠𝑌 + 𝑠𝑡2 [𝑋, 𝑌] + higher􏿸 .

[ TO BE CONTINUED... ]

4 Unitary representation theory
Fix a locally compact group 𝐺.

4.1 Generalities
Recall that a pre-Hilbert space is a ℂ-vector space 𝑉 equipped with a positive-definite Hermitian form
(⋅|⋅) = (⋅|⋅)𝑉 ; if 𝑉 is complete with respect to the norm ‖𝑣‖ ∶= (𝑣|𝑣)1/2, we say 𝑉 is a Hilbert space.

Definition 4.1. A unitary representation (resp. pre-unitary representation) of 𝐺 is a Hilbert (resp. pre-
Hilbert) space (𝑉, (⋅|⋅)) together with a linear left 𝐺-action on 𝑉 such that

• for every 𝑣 ∈ 𝑉, the map 𝑔 ↦ 𝑔𝑣 from 𝐺 to 𝑉 is continuous,

• for each 𝑔 ∈ 𝐺, the operator 𝜋(𝑔) ∶ 𝑉 → 𝑉 from the 𝐺-action is unitary, i.e. ‖𝜋(𝑔)(𝑣)‖ = ‖𝑣‖ for
all 𝑣 ∈ 𝑉.
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Remark 4.2. In view of 3.9 with 𝑉0 = 𝑉, a unitary representation is automatically continuous, and is the
same as a Hilbert representation (𝑉, 𝜋) of 𝐺 such that all 𝜋(𝑔) are unitary operators.

On the other hand, pre-unitary representations can be completed to unitary ones.

Lemma 4.3. If𝑉 is a pre-unitary representation, then the𝐺-action extends uniquely to the Hilbert space
completion 𝑉̂ of 𝑉 with respect to ‖ ⋅ ‖, so that 𝑉̂ is a unitary representation.

Proof. For every 𝑔 ∈ 𝐺, the operator 𝜋(𝑔) extends uniquely to a unitary operator on 𝑉̂. The relation
𝜋(𝑔)𝜋(𝑔′) = 𝜋(𝑔𝑔′) also extends to 𝑉̂. It remains to check the continuity of 𝑔 ↦ 𝜋(𝑔)𝑣 where 𝑣 ∈ 𝑉̂ is
fixed. To see this, take 𝑣0 ∈ 𝑉 and note that

‖𝜋(𝑔)𝑣 − 𝜋(𝑔′)𝑣‖ ≤ ‖𝜋(𝑔)𝑣 − 𝜋(𝑔)𝑣0‖ + ‖𝜋(𝑔)𝑣0 − 𝜋(𝑔′)𝑣0‖ + ‖𝜋(𝑔′)𝑣0 − 𝜋(𝑔′)𝑣‖
= ‖𝑣 − 𝑣0‖ + ‖𝜋(𝑔)𝑣0 − 𝜋(𝑔′)𝑣0‖ + ‖𝑣0 − 𝑣‖.

We conclude from the continuity of 𝑔 ↦ 𝜋(𝑔)𝑣0, by taking ‖𝑣0 − 𝑣‖ sufficiently small.

Definition 4.4. A morphism or an intertwining operator 𝜑 ∶ 𝑉1 → 𝑉2 between unitary representations
is a ℂ-linear homomorphism 𝜑 such that

• 𝜑 is an isometry, i.e. preserves inner products: (𝑣|𝑤)𝑉1 = (𝜑(𝑣)|𝜑(𝑤))𝑉2 for all 𝑣, 𝑤 ∈ 𝑉1,

• 𝜑 respects 𝐺-actions: 𝑔𝜑(𝑣) = 𝜑(𝑔𝑣) for all 𝑣 ∈ 𝑉1 and 𝑔 ∈ 𝐺.

This turns the collection of all unitary representations into a category, which is a non-full subcate-
gory of Hilbert representations. Isomorphisms between unitary representations are also called unitary
equivalences.

Example 4.5. Let 𝐺 acts continuously on a locally compact Hausdorff space; for simplicity assume
that 𝑋 carries a 𝐺-invariant positive Radon measure. It is shown in 3.13 with 𝑝 = 2 that 𝐿2(𝐺) is a
𝐺-representation. It is actually unitary, since we have pointed out in 3.13 that 𝑓 ↦ 𝑔𝑓 preserves the
𝐿2-norm ‖ ⋅ ‖2.

The finite direct sum ⨁𝑛
𝑖=1𝑉𝑖 of unitary representations 𝑉1, … , 𝑉𝑛 is defined so that the underlying

Hilbert space is the orthogonal direct sum of𝑉1, … , 𝑉𝑛. The case of infinite direct sum of (𝑉𝑖)𝑖∈𝐼 requires
more care: we have to use the completed direct sum ⨁̂𝑖∈𝐼𝑉𝑖, which is the completion of the pre-Hilbert
space ⨁𝑖∈𝐼 𝑉𝑖.

The notion of subrepresentations and irreducibility of unitary 𝐺-representations are the same as the
case of continuous representations in general. On the other hand, quotients are unnecessary as shown by
the following complete reducibility.

Lemma 4.6. Let 𝑊 be a subrepresentation of a unitary 𝐺-representation 𝑉. Then

𝑉 = 𝑊 ⊕𝑊⟂

as unitary representations, where 𝑊⟂ ∶= {𝑣 ∈ 𝑉 ∶ ∀𝑤 ∈ 𝑊, (𝑣|𝑤) = 0}.

Proof. The orthogonal decomposition surely works on the level of Hilbert spaces. It remains to notice
that 𝑊⟂ is stable under 𝐺-action.

In contrast to the case of modules, 4.6 does not imply that 𝑉 can be written as a direct sum of
irreducibles. In fact, in many cases 𝑉 has no simple subrepresentations, as we shall see in 4.11.

The following is a unitary variant of the familiar Schur’s Lemma for irreducible representations of
finite groups.
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Theorem 4.7. Let (𝜋, 𝑉) be an irreducible unitary representation. Then

End𝐺-Rep(𝑉) = ℂ ⋅ id𝑉 .

Proof. Let 𝑇 ∶ 𝑉 → 𝑉 be continuous and linear. Suppose that 𝑇 commutes with 𝐺-action, then so is its
adjoint ∗𝑇 since

(𝑤|𝑔∗𝑇𝑣) = (𝑇𝑔−1𝑤|𝑣) = (𝑔−1𝑇𝑤|𝑣) = (𝑇𝑤|𝑔𝑣) = (𝑤|∗𝑇𝑔𝑣)

for all 𝑤 ∈ 𝑉 and 𝑔 ∈ 𝐺. Write

𝑇 = 𝑇 + ∗𝑇
2 + √−1 ⋅

𝑇 − ∗𝑇
2√−1

.

Therefore, to show that 𝑇 is a scalar, we may suppose ∗𝑇 = 𝑇.
Now let 𝜎(𝑇) ⊂ ℝ be the spectrum of 𝑇. Apply the spectral decomposition for self-adjoint bounded

operators (e.g. [8, 12.23 Theorem]) to express 𝑇 via its spectral measure 𝐸:

𝑇 = 􏾙
𝜎(𝑇)

𝜆 d𝐸(𝜆).

Here 𝐸 can be thought as a projection-valued measure on the Borel subsets of 𝜎(𝑇); it is canonically
associated to 𝑇. The irreducibility of 𝑉 together with the 𝐺-equivariance of 𝑇 imply that 𝐸(𝐴∩𝜎(𝑇)) is
either 0 or id𝑉 for all Borel subsets 𝐴 ⊂ ℝ; i.e. 𝜎(𝑇) is an atom in measure-theoretic terms. It follows
that there exists a point 𝜆 with 𝐸({𝜆}) = id𝑉 . Indeed, take any interval 𝐼1 with spectral measure id𝑉 ;
bisect it and pass to the one with spectral measure id𝑉 , named 𝐼2, and so forth to obtain nested intervals
𝐼1 ⊃ 𝐼2 ⊃ ⋯ such that⋂𝑖≥1 𝐼𝑖 = {𝜆} for some 𝜆. The zero-one dichotomy then implies that 𝐸 is supported
at {𝜆}. Therefore 𝑇 = 𝜆 ⋅ id𝑉 .

Corollary 4.8. A unitary representation (𝜋, 𝑉) is irreducible if and only if End𝐺-Rep(𝑉) = ℂ ⋅ id𝑉 .

Proof. The “only if” part follows from 4.7. Conversely, if 𝑊 ⊂ 𝑉 is a proper subrepresentation then
𝑉 = 𝑊 ⊕𝑊⟂ by 4.6, hence

End𝐺-Rep(𝑉) ⊃ End𝐺-Rep(𝑊) ⊕ End𝐺-Rep(𝑊⟂)

has dimension ≥ 2.

Another important consequence of Schur’s Lemma is the existence of central characters in the unitary
case.

Theorem 4.9. Let (𝜋, 𝑉) be an irreducible unitary representation. There is a continuous homomorphism
𝜔𝜋 ∶ 𝑍𝐺 → 𝕊1, where 𝑍𝐺 denotes the center of 𝐺, such that 𝜋(𝑧) = 𝜔𝜋(𝑧)id𝑉 for every 𝑧 ∈ 𝑍𝐺. We call
𝜔𝜋 the central character of 𝜋.

Proof. Central elements act on 𝑉 by scalar multiplication since they commute with 𝐺. This yields the
homomorphism 𝜔𝜋 whose continuity and unitarity follow from that of (𝜋, 𝑉).

In practice, it is convenient to allow any closed subgroup 𝑍 of 𝑍𝐺. By abuse of language, we also
say that (𝜋, 𝑉) has central character 𝜔 on 𝑍, if 𝑍 acts via the continuous homomorphism 𝜔 ∶ 𝑍 → 𝕊1.

Corollary 4.10. If 𝐺 is commutative, the irreducible unitary representations are precisely the one-
dimensional unitary representations.

Proof. For commutative 𝐺 we have 𝐺 = 𝑍𝐺 acts via 𝜔𝜋 on irreducible (𝜋, 𝑉). Conversely, one-
dimensional representations are clearly irreducible.
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Example 4.11. Consider the unitary ℝ-representation 𝐿2(ℝ). It has no irreducible subrepresentations.
Indeed, an irreducible subrepresentation must be generated by an 𝐿2-function 𝑓 with 𝑓(𝑥+𝑡) = 𝜒(𝑡)𝑓(𝑥),
where 𝜒 is a continuous homomorphism ℝ → 𝕊1. The only such 𝐿2-function is 0.

The next enhancement of 4.7 will be needed.

Theorem 4.12. Let (𝜋, 𝑉) and (𝜎,𝑊) be unitary representations of 𝐺 and assume that (𝜋, 𝑉) is irre-
ducible. Let 𝑇 be a 𝐺-equivariant linear map from a dense 𝐺-stable vector subspace 𝑉0 ⊂ 𝑉 to 𝑊. If
the graph of 𝑇

Γ𝑇 ∶= {(𝑣, 𝑇𝑣) ∈ 𝑉0 ×𝑊 ∶ 𝑣 ∈ 𝑉0}

is closed in𝑉×𝑊, then𝑉0 = 𝑉 and𝑇 is a scalar multiple of a morphism between unitary representations.

Proof. We shall make use of basic facts on unbounded operators from Hilbert spaces 𝑉 to𝑊 in general;
see for example [8, Chapter 13]. Such an operator 𝑇 is only defined on some subspace 𝒟(𝑇) of 𝑉, and
continuity is not presumed. When taking their composites, etc., domains must shrink suitably. In our
case 𝒟(𝑇) = 𝑉0 is dense.

The first result is the existence of an adjoint ∗𝑇 defined on

𝒟(∗𝑇) ∶= 􏿺𝑤 ∈ 𝑊 ∶ (𝑇(⋅)|𝑤)𝑊 ∈ HomTopVect(𝑉0, ℂ)􏿽 ,

uniquely determined by (𝑇𝑣|𝑤)𝑊 = (𝑣|∗𝑇𝑤)𝑉 . Secondly, assume that Γ𝑇 is closed, then 𝒟(∗𝑇) is also
dense; then consider the unbounded operator 𝑄 ∶= 1 + ∗𝑇𝑇 from 𝑉 to itself. According to [8, Theorem
13.13],

• 𝒟(𝑄) = {𝑣 ∈ 𝒟(𝑇) ∶ 𝑇𝑣 ∈ 𝒟(∗𝑇)} maps onto 𝑉 under 𝑄;

• there is a continuous endomorphism 𝐵 of 𝑉 such that im(𝐵) ⊂ 𝒟(𝑄) and 𝑄𝐵 = id𝑉 . In fact
𝑏 ∶= 𝐵𝑣 (for all 𝑣 ∈ 𝑉) is characterized in 𝑊 ⊕𝑉 by

(0, 𝑣) = (𝑐, ∗𝑇𝑐) + (−𝑇𝑏, 𝑏), 𝑏 ∈ 𝒟 (𝑇), 𝑐 ∈ 𝒟 (∗𝑇). (4.1)

Now apply these results to our setting. The domain𝒟(∗𝑇) is a 𝐺-stable subspace as 𝑉0 = 𝒟(𝑇) is. One
readily checks that ∗𝑇 ∶ 𝒟 (∗𝑇) → 𝑉 is also 𝐺-equivariant. From the characterization (4.1), we conclude
that 𝐵 is 𝐺-equivariant as well, hence 𝐵 = 𝜆 ⋅ id𝑉 for some 𝜆 ∈ ℂ× by 4.7, as 𝑄𝐵 = id𝑉 .

Consequently 𝒟(𝑄) = 𝒟(𝑇) = 𝑉 and 𝑄 = 𝜆−1id𝒟(𝑄). This also implies 𝒟(∗𝑇) ⊃ im(𝑇). Now

(𝑇𝑣|𝑇𝑣′)𝑉 = (∗𝑇𝑇𝑣|𝑣′)𝑉 = (𝜆−1 − 1)(𝑣|𝑣′)𝑉 , 𝑣, 𝑣′ ∈ 𝑉0

hence 𝑇 is a scalar multiple of an isometry 𝑉 → 𝑊.

4.2 External tensor products
The theory of completed tensor products for general locally convex spaces 𝑉1, 𝑉2 is delicate. For our
present purposes, the case of Hilbert spaces suffices.

Definition 4.13. Let (𝑉1, (⋅|⋅)1) and (𝑉2, (⋅|⋅)2) be Hilbert spaces. Write 𝑉1 ⊗𝑉2 ∶= 𝑉1 ⊗ℂ 𝑉2 and equip
it with an Hermitian form by requiring

(𝑣1 ⊗ 𝑣2 | 𝑤1 ⊗ 𝑤2) = (𝑣1|𝑤1)1 ⋅ (𝑣2|𝑤2)2, 𝑣1, 𝑤1 ∈ 𝑉1, 𝑣2, 𝑤2 ∈ 𝑉2

and extend by sesquilinearity to all𝑉1⊗𝑉2. This is well-defined and positive-definite. Denote by𝑉1⊗̂𝑉2
the corresponding completion of 𝑉1 ⊗ 𝑉2.
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The operation ⊗̂ is functorial in 𝑉1 and 𝑉2, turning the collection of Hilbert spaces into a symmetric
monoidal category.

Now suppose that 𝑉𝑖 is the underlying space of a unitary representations 𝜋𝑖 of a locally compact
group 𝐺𝑖, for 𝑖 = 1, 2. Let 𝐺1 × 𝐺2 act on 𝑉1 ⊗ 𝑉2 via 𝜋1 ⊗ 𝜋2; this extends to an action on 𝑉1⊗̂𝑉2
by unitary operators. In order to stress that it is acted upon by 𝐺1 × 𝐺2, it is customary to designate the
resulting representation by 𝜋1 ⊠ 𝜋2. Summing up, we obtain

􏿴𝑉1⊗̂𝑉2, 𝜋1 ⊠ 𝜋2􏿷 ∶ unitary representation of 𝐺1 × 𝐺2.

Proposition 4.14. If 𝜋1 and 𝜋2 are both irreducible, then 𝜋1 ⊠ 𝜋2 is irreducible as a unitary represen-
tation of 𝐺1 × 𝐺2.

Proof. In view of 4.8, it suffices to show that every continuous 𝐺1 × 𝐺2-equivariant endomorphism 𝑇
of 𝜋1 ⊠ 𝜋2 is 𝑐 ⋅ id for some 𝑐 ∈ ℂ. Since this property can be tested by taking inner product with all
elements from 𝑉1 ⊗ 𝑉2, which are dense in 𝑉1⊗̂𝑉2, it is equivalent to that

􏿴𝑇(𝑣1 ⊗ 𝑣2) | 𝑤1 ⊗ 𝑤2􏿷 = 𝑐(𝑣1|𝑤1)𝑉1 ⋅ (𝑣2|𝑤2)𝑉2
for all 𝑣1, 𝑣2 and 𝑤1, 𝑤2.

To achieve this, first fix 𝑣2, 𝑤2 ∈ 𝑉2 and define the endomorphism

𝜑𝑤2,𝑣2 ∶ 𝑉1 ⟶𝑉1 ⊗ ℂ = 𝑉1
𝑣1 ⟼􏿴id𝑉1 ⊗ (⋅|𝑤2)𝑉2􏿷 (𝑇(𝑣1 ⊗ 𝑣2); )

here we view (⋅|𝑤2)𝑉2 as 𝑉2 → ℂ. It is continuous and 𝐺-equivariant, hence 4.7 implies 𝜑𝑤2,𝑣2 =
𝑎𝑤2,𝑣2 ⋅ id𝑉1 for some scalar 𝑎𝑤2,𝑣2 . Now we have a continuous linear map

𝐴 ∶ 𝑉2 ⟶ (𝑉2)∗

𝑤2 ⟼􏿮𝑣2 ↦ 𝑎𝑤2,𝑣2􏿱 .

Recall that (𝑉2)∗ ≃ 𝑉2 via the Hermitian form. A careful verification reveals that 𝐴 is 𝐺2-equivariant,
hence 𝐴 = 𝑐 ⋅ id𝑉2 for some 𝑐 ∈ ℂ. In other words, 𝑎𝑤2,𝑣2 = 𝑐(𝑣2|𝑤2)𝑉2 for all 𝑣2, 𝑤2 ∈ 𝑉2. This implies
􏿴𝑇(𝑣1 ⊗ 𝑣2) | 𝑤1 ⊗ 𝑤2􏿷 = 𝑐(𝑣1|𝑤1)𝑉1 ⋅ (𝑣2|𝑤2)𝑉2 .

Proposition 4.15. Let (𝜋𝑖, 𝑉𝑖) and (𝜎𝑖,𝑊𝑖) be irreducible unitary representations of 𝐺𝑖 for 𝑖 = 1, 2. If
𝜋1 ⊠ 𝜎1 ≃ 𝜋2 ⊠ 𝜎2, then 𝜋𝑖 ≃ 𝜎𝑖 for 𝑖 = 1, 2.

Proof. Suppose that 𝑇 ∶ 𝜋1 ⊠𝜎1 ≃ 𝜋2 ⊠𝜎2 is nonzero. Then there must exist 𝑣2 ∈ 𝑉2 and 𝑤2 ∈ 𝑊2 such
that

𝜑𝑤2,𝑣2 ∶ 𝑉1 ⟶𝑊1 ⊗ ℂ = 𝑊1

𝑣1 ⟼􏿴id𝑊1 ⊗ (⋅|𝑤2)𝑊2􏿷 (𝑇(𝑣1 ⊗ 𝑣2))

is nonzero. As in the proof of 4.14, it is𝐺1-equivariant and continuous, hence𝜋1 ≃ 𝜎1 by 4.12. Switching
the roles of 𝐺1, 𝐺2 yields 𝜋2 ≃ 𝜋1.

Of particular importance is the case 𝐺1 = 𝐺 = 𝐺2 and (𝑉1, 𝑉2) = (𝑉, 𝑉̄), where (𝜋, 𝑉) is a unitary
representation of 𝐺 and (𝜋̄, 𝑉̄) is its Hermitian conjugate; see 3.17. Recall that (𝑥|𝑦)𝑉̄ ∶= (𝑦|𝑥)𝑉 .

By linear algebra, there is a ℂ-linear isomorphism

𝑉 ⊗ 𝑉̄ ∼⟶ Endf.r.(𝑉) ∶= 􏿼𝑇 ∶ 𝑉
/ℂ→ 𝑉 ∶ finite rank, continuous􏿿

𝑣 ⊗ 𝑤⟼ 𝐴𝑣⊗𝑤 ∶= (⋅|𝑤)𝑣.
(4.2)

32



Equip Endf.r.(𝑉) with the Hilbert–Schmidt Hermitian inner product, which is positive-definite:

(𝐴|𝐵)HS ∶= Tr(∗𝐵 ⋅ 𝐴).

It is routine yet amusing to verify that ∗𝐴𝑤⊗𝑣 = 𝐴𝑣⊗𝑤. Hence

(𝐴𝑣⊗𝑤|𝐴𝑣′⊗𝑤′)HS
= (𝑣′|𝑣)𝑉 ⋅ (𝑤′|𝑤)𝑉 = (𝑣|𝑣′)𝑉 ⋅ (𝑤|𝑤′)𝑉̄

which equals the Hermitian inner product in 𝑉 ⊗ 𝑉̄.
Also recall that the space of Hilbert–Schmidt operators 𝑉 → 𝑉 is defined as

HS(𝑉) ∶= completion of Endf.r.(𝑉) relative to (⋅|⋅)HS.

The group 𝐺 × 𝐺 acts on Endf.r.(𝑉) and HS(𝑉) by

(𝑎, 𝑏)𝑇 = 𝜋(𝑎)𝑇𝜋(𝑏)−1.

This is visibly unitary and corresponds to the action on 𝑉 ⊗ 𝑉̄ under (4.2).

Theorem 4.16. Let (𝜋, 𝑉) be a unitary representation of 𝐺. The identification (4.2) extends to an iso-
morphism

𝜋 ⊠ 𝜋̄ ≃ HS(𝑉)

between unitary 𝐺 × 𝐺-representations.

Proof. The identification is a 𝐺 × 𝐺-equivariant isometry between 𝑉 ⊗ 𝑉̄ and Endf.r.(𝑉). Now pass to
completion.

Remark 4.17. Equip 𝑉⊗̂𝑉 (resp. HS(𝑉)) in 4.16 with the ℂ-algebra structure with multiplication

(𝑣 ⊗ 𝑣′) ⋆ (𝑤 ⊗ 𝑤′) ∶= (𝑣|𝑤′)𝑤 ⊗ 𝑣′, (resp. 𝐴 ⋆ 𝐵 ∶= 𝐵 ∘ 𝐴).

Then the isomorphism HS(𝑉) ∼→ 𝜋⊗̂𝜋 respects the⋆-multiplications on both sides. Indeed, this reduces
to an application of

(⋅|𝑣′)𝑣 ⋆ (⋅|𝑤′)𝑤 = (𝑣|𝑤′)(⋅|𝑣′)𝑤,

which indeed corresponds to (𝑣 ⊗ 𝑣′) ⋆ (𝑤 ⊗ 𝑤′).

4.3 Square-integrable representations
Fix a closed subgroup 𝑍 ⊂ 𝑍𝐺. Central characters of irreducible unitary representations will be defined
relative to 𝑍. In view of 1.52, up to ℝ×

>0 there exists a unique right Haar measure on 𝐺/𝑍, since the
condition 𝛿𝐺|𝑍 = 𝛿𝑍 is trivially satisfied: both are trivial from the very definition of 1.27.

As unitary representations are a special kind of Hilbert representations, it makes sense to consider
the matrix coefficients 𝑐𝑣⊗𝑤(𝑔) = (𝜋(𝑔)𝑣|𝑤)𝑉 for 𝑣 ⊗ 𝑤 ∈ 𝑉 ⊗ 𝑉̄ as in 3.18. If (𝜋, 𝑉) admits a central
character 𝜔𝜋 as in 4.9, for example when (𝜋, 𝑉) is irreducible, then

𝑐𝑣⊗𝑤(𝑧𝑔) = 𝜔𝜋(𝑧)𝑐𝑣⊗𝑤(𝑔), 𝑧 ∈ 𝑍, 𝑔 ∈ 𝐺.

In this case |𝑐𝑤⊗𝑣| factors through 𝐺/𝑍.
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Definition 4.18. Denote by 𝐿2(𝐺/𝑍) the 𝐿2-space defined relative to any right Haar measure on 𝐺/𝑍.
More precisely, for every continuous homomorphism 𝜔 ∶ 𝑍 → 𝕊1}, set

𝐿2(𝐺/𝑍,𝜔) ∶= 􏿼 𝑓 ∶ 𝐺 → ℂ, 𝑓(𝑧𝑥) = 𝜔(𝑧)𝑓(𝑥), 𝑧 ∈ 𝑍
|𝑓| ∈ 𝐿2(𝐺/𝑍) 􏿿 .

It is a Hilbert space under ‖𝑓‖2 = ∫
𝐺/𝑍

|𝑓|2 d𝜇 once a right Haar measure 𝜇 is chosen. Specifically, one
starts from measurable 𝑓, and take the quotient by functions with ‖ ⋅ ‖ = 0 and so on. Likewise, we define
the other function spaces on 𝐺 with (𝑍, 𝜔)-equivariance such as

𝐶𝑐(𝐺/𝑍,𝜔) ∶= 􏿼 𝑓 ∶ 𝐺 → ℂ continuous, 𝑓(𝑧𝑥) = 𝜔(𝑧)𝑓(𝑥), 𝑧 ∈ 𝑍
Supp(𝑓)/𝑍 is compact 􏿿 .

Notice that 𝐿2(𝐺/𝑍,𝜔) is also a unitary representation of 𝐺 under 𝑔 ∶ 𝑓(𝑥) ↦ 𝑓(𝑥𝑔) as in 4.5.

Definition 4.19. Suppose 𝐺 is unimodular. An irreducible unitary representation (𝜋, 𝑉) of 𝐺 is called
square-integrable or a discrete series representation if the matrix coefficient 𝑐𝑣⊗𝑤 is nonzero and lies in
𝐿2(𝐺/𝑍,𝜔𝜋) for some 𝑤, 𝑣.

Such representations are also called essentially square-integrable in the literature, while the term
square-integrable is reserved to those with 𝑐𝑣⊗𝑤 ∈ 𝐿2(𝐺), i.e. for 𝑍 = {1}. Square-integrable represen-
tations in the latter strict sense exists only when 𝑍𝐺 is compact, cf. 1.21 and the integration formula in
1.52; when 𝑍𝐺 is compact, both definitions coincide.

In 4.21 we will extend this definition to non-unimodular groups.

Lemma 4.20. Let (𝜋, 𝑉) be an irreducible unitary representation (𝜋, 𝑉) of a unimodular group 𝐺. The
following are equivalent.

1. (𝜋, 𝑉) is square-integrable;

2. 𝑐𝑣⊗𝑤 ∈ 𝐿2(𝐺/𝑍,𝜔𝜋) for all 𝑣, 𝑤 ≠ 0, and if 𝑇 ∶ 𝑣′ ↦ 𝑐𝑣′⊗𝑤 is not identically zero, 𝑇 is a 𝐺-
equivariant linear map from 𝑉 into 𝐿2(𝐺/𝑍,𝜔𝜋) with closed image, which is a scalar multiple of
an isometry.

3. there exists an embedding 𝑉 ↪ 𝐿2(𝐺/𝑍,𝜔𝜋) as unitary 𝐺-representations.

Proof. We begin with (1) ⟹ (2). Fix 𝑤, 𝑣 ∈ 𝑉 with 𝑐𝑣⊗𝑤 ∈ 𝐿2(𝐺/𝑍,𝜔𝜋) nonzero. We begin by
showing that 𝑐𝑣′⊗𝑤 ∈ 𝐿2(𝐺/𝑍,𝜔𝜋) for all 𝑣′. Set

𝑉0 ∶= 􏿺𝑣′ ∈ 𝑉 ∶ 𝑐𝑣′⊗𝑤 ∈ 𝐿2(𝐺/𝑍,𝜔𝜋)􏿽 .

This is a 𝐺-stable vector subspace by (3.1); it contains 𝑣, hence we infer from the irreducibility of 𝑉 that
𝑉0 is dense. Define a linear map

𝑇 ∶ 𝑉0 → 𝐿2(𝐺/𝑍,𝜔𝜋), 𝑣′ ↦ 𝑐𝑣′⊗𝑤.

By (3.1) we see 𝑇 is 𝐺-equivariant. Equip 𝑉0 with the Hermitian pairing

((𝑣′1|𝑣′2)) = (𝑣′1|𝑣′2)𝑉 + (𝑇𝑣′1|𝑇𝑣′2)𝐿2 .

We claim that 𝑉0 is a Hilbert space under ((⋅|⋅)), and the graph Γ𝑇 is closed in 𝑉0 × 𝐿2(𝐺/𝑍,𝜔𝜋).
Indeed, ((⋅|⋅)) is evidently Hermitian and positive definite; we set out to show its completeness. The

choice of ((⋅|⋅)) implies that for every Cauchy sequence (𝑣′𝑖 )∞𝑖=1 in𝑉0, there exists (𝑣′, 𝑐) ∈ 𝑉×𝐿2(𝐺/𝑍,𝜔𝜋)
such that 𝑣′𝑖 → 𝑣′ in 𝑉 and 𝑇𝑣′𝑖 → 𝑐 in 𝐿2(𝐺/𝑍,𝜔𝜋). Observe that 𝑣′𝑖 → 𝑣′ implies that

|𝑐𝑣′𝑖⊗𝑤(𝑥) − 𝑐𝑣′⊗𝑤(𝑥)| = |(𝜋(𝑥)(𝑣
′
𝑖 − 𝑣′)|𝑤)| ≤ ‖𝑣′𝑖 − 𝑣′‖ ⋅ ‖𝑤‖
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so that 𝑇𝑣′𝑖 → 𝑐𝑣′⊗𝑤 uniformly on𝐺. On the other hand, one can pass to a subsequence to ensure 𝑇𝑣′𝑖 → 𝑐
pointwise and a.e. Therefore 𝑐𝑣′⊗𝑤 = 𝑐 so that 𝑣′ ∈ 𝑉0. This proves both the completeness and closedness
parts of our claim.

By 4.12, the claim implies that𝑉0 = 𝑉 and 𝑇 is a scalar multiple of an isometry. Such maps between
Hilbert spaces always have closed images.

To conclude (2), we must also show that 𝑐𝑣⊗𝑤′ ∈ 𝐿2(𝐺/𝑍,𝜔𝜋) for all 𝑤′ ∈ 𝑉. Via (3.2) and the
unimodularity of 𝐺/𝑍, this is subsumed into the previous case.

It is immediate that (2) ⟹ (3): if 𝑤 is nonzero, then 𝑇 furnishes the required embedding.
(3) ⟹ (1): Assume that (𝜋, 𝑉) is a unitary subrepresentation of 𝐿2(𝐺/𝑍,𝜔𝜋) and 𝑣 ∈ 𝑉 is nonzero.

There exists 𝑤̃ ∈ 𝐿2(𝐺/𝑍,𝜔𝜋) such that (𝑣|𝑤̃)𝐿2(𝐺/𝑍,𝜔𝜋) ≠ 0. We may even assume that 𝑤̃ ∈ 𝐶𝑐(𝐺/𝑍,𝜔𝜋)
by density. Then 𝑣′ ↦ (𝑣′|𝑤̃)𝐿2(𝐺/𝑍,𝜔𝜋) restricts to a continuous linear functional on 𝑉, of the form
𝑣′ ↦ (𝑣′|𝑤)𝑉 for a unique 𝑤 ∈ 𝑉. Thus 𝑐𝑣⊗𝑤(1) ≠ 0 and it remains to show 𝑐𝑣⊗𝑤 ∈ 𝐿2(𝐺/𝑍,𝜔𝜋).

Denote by 𝜇 the chosen right Haar measure on 𝐺/𝑍. Put 𝑢(𝑥) ∶= 𝑤̃(𝑥−1) to express 𝑐𝑣⊗𝑤(𝑔) =
(𝜋(𝑔)𝑣|𝑤̃)𝐿2(𝐺/𝑍,𝜔𝜋) as

􏾙
𝐺/𝑍

𝑢(𝑥−1)𝑣(𝑥𝑔) d𝜇(𝑥).

Its absolute value is bounded by (|𝑢| ⋆ |𝑣|)(𝑔) (convolution on 𝐺/𝑍). As |𝑢| ∈ 𝐶𝑐(𝐺/𝑍) and |𝑣| ∈ 𝐿2(𝐺/𝑍),
it follows either from a direct analysis or Young’s inequality 2.4 with (𝑝, 𝑞, 𝑟) = (1, 2, 2) that |𝑢| ⋆ |𝑣| ∈
𝐿2(𝐺/𝑍), as required.

The third condition in 4.20 makes sense for any locally compact 𝐺, which leads to the following
general definition.

Definition 4.21. Let 𝐺 be a locally compact group. An irreducible unitary representation (𝜋, 𝑉) of 𝐺 is
called square-integrable or a discrete series representation if it is isomorphic to a unitary subrepresen-
tation of 𝐿2(𝐺/𝑍,𝜔𝜋).

Theorem 4.22 (Schur orthogonality relation). Let (𝜋, 𝑉) and (𝜎,𝑊) be square-integrable representa-
tions of a unimodular group 𝐺 with 𝜔𝜋 = 𝜔𝜎, and fix a right Haar measure 𝜇 on 𝐺/𝑍.

1. If (𝜋, 𝑉) and (𝜎,𝑊) are not isomorphic as unitary representations, then

􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′𝑐𝑤⊗𝑤′ d𝜇 = 0

for all 𝑣, 𝑣′ ∈ 𝑉 and 𝑤,𝑤′ ∈ 𝑊.

2. In the case 𝜋 = 𝜎, there exists 𝑑(𝜋) ∈ ℝ>0, inverse-proportional to the choice of 𝜇, such that

􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′𝑐𝑤⊗𝑤′ d𝜇 = 𝑑(𝜋)−1(𝑣|𝑤)𝑉(𝑤′|𝑣′)𝑉

for all 𝑣, 𝑣′, 𝑤, 𝑤′ ∈ 𝑉.

Proof. Write 𝑇 ∶ 𝑣 ↦ 𝑐𝑣⊗𝑣′ and 𝑆 ∶ 𝑤 ↦ 𝑐𝑤⊗𝑤′ . They are scalar multiples of isometries and are
𝐺-equivariant. Now

􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′𝑐𝑤⊗𝑤′ d𝜇 = (𝑇𝑣|𝑆𝑤)𝐿2(𝐺/𝑍,𝜔𝜋) = (
∗𝑆𝑇𝑣|𝑤)𝑊 .

But ∗𝑆 is also continuous and 𝐺-equivariant, thus 𝐴 ∶= ∗𝑆𝑇 ∶ 𝑉 → 𝑊 is a morphism in 𝐺-Rep. Then
4.12 implies that 𝐴 is a scalar multiple of a morphism between unitary representations. If (𝜋, 𝑉) and
(𝜎,𝑊) are non-isomorphic, the only possibility is 𝐴 = 0 and the first item is proved.

35



Next, assume 𝜋 = 𝜎. Then 𝐴 = 𝜆𝑣′,𝑤′ ⋅ id𝑉 for some 𝜆𝑣′,𝑤′ ∈ ℂ. This amounts to

􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′𝑐𝑤⊗𝑤′ d𝜇 = 𝜆𝑣′,𝑤′(𝑣|𝑤)𝑉 .

Switching 𝑣 ↔ 𝑣′ and 𝑤 ↔ 𝑤′ replaces the matrix coefficients by their complex conjugates. We deduce

𝜆𝑣′,𝑤′(𝑤|𝑣)𝑉 = 𝜆𝑣,𝑤(𝑣′|𝑤′)𝑉 .

Fix 𝑣 = 𝑤 ≠ 0 in the equation above to see that 𝜆𝑣′,𝑤′ = 𝑐(𝑤′|𝑣′)𝑉 for some constant 𝑐 depending solely
on (𝜋, 𝑉) and 𝜇; it is proportional to 𝜇. Setting 𝑣 = 𝑤 = 𝑤′ = 𝑣′ to deduce ‖𝑐𝑣⊗𝑣‖2𝐿2(𝐺/𝑍,𝜔𝜋) = 𝑐(𝑣|𝑣)

2
𝑉 .

As 𝑐𝑣⊗𝑣(1) ≠ 0 whenever 𝑣 ≠ 0, we see 𝑐 > 0. Now set 𝑑(𝜋) = 𝑐−1 to conclude.

Corollary 4.23. The convolutions of square-integrable matrix coefficients on 𝐺/𝑍 are well-defined. In
fact, for irreducible unitary representations (𝜋, 𝑉), (𝜎,𝑊) we have

𝑐𝑣⊗𝑣′ ⋆ 𝑐𝑤⊗𝑤′(𝑥) ∶= 􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′(𝑔−1)𝑐𝑤⊗𝑤′(𝑔𝑥) d𝜇(𝑔)

=
⎧⎪⎨
⎪⎩
𝑑(𝜋)−1(𝑣|𝑤′)𝑐𝑤⊗𝑣′(𝑥), 𝜋 = 𝜎
0, 𝜋 ≄ 𝜎,

for all 𝑣′, 𝑣 ∈ 𝑉 and 𝑤,𝑤′ ∈ 𝑊.

Proof. Use (3.2), (3.1) and apply 4.22 to deduce

􏾙
𝐺/𝑍

𝑐𝑣⊗𝑣′(𝑔−1)𝑐𝑤⊗𝑤′(𝑔𝑥) d𝜇(𝑔) = 􏾙
𝐺/𝑍

𝑐𝜎(𝑥)𝑤⊗𝑤′(𝑔)𝑐𝑣′⊗𝑣(𝑔) d𝜇(𝑔)

=
⎧⎪⎨
⎪⎩
𝑑(𝜋)−1(𝜋(𝑥)𝑤|𝑣′)(𝑣|𝑤′), 𝜋 = 𝜎
0, 𝜋 ≄ 𝜎.

In the first case, it equals 𝑑(𝜋)−1(𝑣|𝑤′)𝑐𝑤⊗𝑣′(𝑥).

Now enters the bilateral translation on 𝐺. Observe that 𝐺 × 𝐺 acts on the right of 𝐺 by (𝑎, 𝑏) ∶ 𝑥 ↦
𝑏−1𝑥𝑎. It acts on the left of functions 𝐺 → ℂ by

(𝑎, 𝑏)𝑓 ∶ 𝑥 ↦ 𝑓(𝑏−1𝑥𝑎), 𝑥 ∈ 𝐺.

Proposition 4.24. The action ((𝑎, 𝑏)𝑓)(𝑥) = 𝑓(𝑏−1𝑥𝑎) makes 𝐿2(𝐺/𝑍,𝜔) into a unitary representation of
𝐺 × 𝐺.

Proof. Since 𝐺/𝑍 is assumed to be unimodular, this action is unitary; in other words 𝐺 carries a 𝐺 ×𝐺-
invariant positive Radon measure. The rest of the verification is akin to 4.5.

Corollary 4.25. Let 𝜋 be a square-integrable unitary representation of𝐺 with central character𝜔 on 𝑍.
Then 𝑣⊗𝑤 ↦ 𝑑(𝜋)−1𝑐𝑣⊗𝑤 yields an isomorphism from𝜋⊠𝜋̄ onto the irreducible𝐺×𝐺-subrepresentation
of 𝐿2(𝐺/𝑍,𝜔) generated by all matrix coefficients of 𝜋.

Proof. The map is 𝐺 × 𝐺-equivariant by (3.1) on 𝑉 ⊗ 𝑉̄. It is an isometry on 𝑉 ⊗ 𝑉̄ by 4.22 since

(𝑣 ⊗ 𝑣′|𝑤 ⊗ 𝑤′)𝑉⊗𝑉̄ = (𝑣|𝑤)𝑉(𝑣′|𝑤′)𝑉̄ = (𝑣|𝑤)𝑉(𝑤′|𝑣′)𝑉 .

These properties extends to𝑉⊗̂𝑉̄ by density. The image of any isometry is closed. Irreducibility of 𝜋⊠𝜋̄
follows from 4.14.

Definition 4.26. The positive constant 𝑑(𝜋) is called the formal degree of 𝜋. It depends only on the
isomorphism class of 𝜋 and 𝐺, 𝜇. It is inverse-proportional to the choice of 𝜇 and generalizes the notion
of dimension, cf. 4.41.
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4.4 Spectral decomposition: the discrete part
Fix a closed subgroup 𝑍 ⊂ 𝑍𝐺. We still assume 𝐺/𝑍 unimodular, and fix a Haar measure 𝜇 on it.

Definition 4.27. Let𝜔 ∶ 𝑍 → 𝕊1 be a continuous character. The discrete spectrum with central character
𝜔 is the subrepresentation

𝐿2disc(𝐺/𝑍,𝜔) ∶= 􏾜􏿺𝜋 ⊂ 𝐿2(𝐺/𝑍,𝜔) ∶ irred. unitary subrep.􏿽.

By 4.20, every 𝜋 in the sum is square-integrable and every square-integrable unitary representation
𝜋 with 𝜔𝜋|𝑍 = 𝜔 intertwines into 𝐿2disc(𝐺/𝑍,𝜔) via matrix coefficients.

Lemma 4.28. Every irreducible unitary subrepresentation of 𝐿2(𝐺/𝑍,𝜔) lies in the closed subspace
generated by matrix coefficients of square-integrable representations of central character 𝜔 on 𝑍.

Proof. Let 𝐶 stand for the closed subspace generated by all square-integrable matrix coefficients of cen-
tral character 𝜔 on 𝑍. If the assertion does not hold, some irreducible subrepresentation (𝜋, 𝑉) would
have non-trivial orthogonal projection to 𝐶⟂. The projection being 𝐺-equivariant, 𝜋 can be embedded
inside 𝐶⟂. This is contradictory as explained below.

Assume that 𝑉 ⊂ 𝐶⟂ and 𝑓 ∈ 𝑉 is nonzero. Express 𝜇 as 𝜇𝐺/𝜇𝑍 according to 1.53. There exists a
real-valued 𝜑 ∈ 𝐶𝑐(𝐺) such that the function

Φ(𝑔) ∶= (𝜑̌ ⋆ 𝑓)(𝑔) (continuous by 2.5)

= 􏾙
𝐺
𝑓(ℎ𝑔)𝜑(ℎ) d𝜇𝐺(ℎ) = 􏾙

𝐺/𝑍
􏾙
𝑍
𝑓(ℎ𝑔)𝜑(𝑧ℎ)𝜔(𝑧) d𝜇𝑍(𝑧) d𝜇(ℎ)

= 􏾙
𝐺/𝑍

𝑓(ℎ𝑔)𝜑𝜔(ℎ) d𝜇(ℎ)

is not identically zero, where

𝜑𝜔(ℎ) ∶= 􏾙
𝑍
𝜑(𝑧ℎ)𝜔(𝑧) d𝜇𝑍(ℎ), 𝜑𝜔 ∈ 𝐶𝑐(𝐺/𝑍,𝜔).

This is indeed possible by 3.29 since

Φ(𝑔) = 􏾙
𝐺
𝜑̌(ℎ)𝑓(ℎ−1𝑔) d𝜇𝐺(ℎ) = 𝐿(𝜑̌)𝑓(𝑔)

where 𝐿 denotes the continuous 𝐺-representation 𝐿(ℎ)𝑓(𝑥) = 𝑓(ℎ−1𝑥) on 𝐿2(𝐺/𝑍,𝜔).
Note thatΦ(𝑔) = 𝑐𝑓⊗𝑤(𝑔)where𝑤 ∈ 𝑉 is such that (⋅|𝜑𝜔)𝐿2(𝐺/𝑍,𝜔) = (⋅|𝑤)𝑉 . We infer that (Φ|𝑐𝑓⊗𝑤) =

‖Φ‖2𝐿2(𝐺/𝑍,𝜔) ≠ 0. On the other hand, since 𝐺/𝑍 is unimodular,

(Φ|𝑐𝑓⊗𝑤) =􏽪
𝐺/𝑍×𝐺/𝑍

𝑓(ℎ𝑔)𝜑𝜔(ℎ) ⋅ 𝑐𝑓⊗𝑤(𝑔) d𝜇(ℎ) d𝜇(𝑔)

= 􏾙
𝐺/𝑍

􏿶􏾙
𝐺/𝑍

𝑓(𝑔)𝑐𝑓⊗𝑤(ℎ−1𝑔) d𝜇(𝑔)􏿹 𝜑𝜔(ℎ) d𝜇(ℎ)

∵ (3.1) = 􏾙
𝐺/𝑍

􏿴 𝑓 | 𝑐𝑓⊗𝜋(ℎ)𝑤􏿷𝐿2(𝐺/𝑍,𝜔) 𝜑𝜔(ℎ) d𝜇(ℎ).

The inner integral vanishes by assumption. Contradiction.

In general, it may happen that 𝐿2disc(𝐺/𝑍,𝜔) = {0} for all 𝜔. See 4.11.
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Theorem 4.29. For each unitary character𝜔 of𝑍, there is an isomorphism of unitary𝐺×𝐺-representations

Coeff ∶ 􏾘̂
𝜋
𝜋 ⊠ 𝜋̄ ∼⟶𝐿2disc(𝐺/𝑍,𝜔)

(𝑣𝜋 ⊗ 𝑤𝜋)𝜋 ⟼􏾜
𝜋
𝑑(𝜋)𝑐𝑣𝜋⊗𝑤𝜋

where

• (𝜋, 𝑉𝜋) ranges over the square-integrable representations with central character 𝜔 on 𝑍, taken up
to isomorphism,

• 𝐺 × 𝐺 acts on 𝐿2(𝐺/𝑍,𝜔) by ((𝑎, 𝑏)𝑓)(𝑥) = 𝑓(𝑏−1𝑥𝑎), and

• the ⨁̂ is a completed orthogonal direct sum of unitary 𝐺 × 𝐺-representations.

Moreover, 𝜋 ⊠ 𝜋̄ are pairwise non-isomorphic; i.e. the decomposition above of unitary representations
is multiplicity-free;

Proof. Combining 4.22, 4.25 with 4.28, we see that matrix coefficients from different 𝜋 are orthogonal
and they generate 𝐿2disc(𝐺/𝑍,𝜔). The representations 𝜋 ⊠ 𝜋̄ are pairwise distinct by 4.15.

Remark 4.30. Under Coeff, the multiplication on HS(𝑉𝜋) ≃ 𝜋 ⊠ 𝜋 defined in 4.17 corresponds to con-
volution on L2disc(𝐺/𝑍,𝜔). Indeed, (by density) this is merely a restatement of 4.23.

The next result describes the Hilbert–Schmidt operator on 𝑉𝜋 in terms of the corresponding matrix
coefficient.

Lemma 4.31. Let (𝜋, 𝑉) be a square-integrable unitary representation with central character 𝜔 on 𝑍.
Consider 𝜑 ∶= Coeff(𝑣 ⊗ 𝑤) ∈ 𝐿2(𝐺/𝑍,𝜔) ∩ 𝐶(𝐺/𝑍,𝜔), where 𝑣 ⊗ 𝑤 ∈ 𝑉 ⊗ 𝑉̄. Then the vector-valued
integrals

𝜋(𝜑̌)𝑣′ = 􏾙
𝐺/𝑍

𝜑̌(𝑔)𝜋(𝑔)𝑣′ d𝜇(𝑔), 𝑣′ ∈ 𝑉

defines an operator 𝑉 → 𝑉, which equals the (⋅|𝑤)𝑣 ∈ HS(𝑉) determined by 𝑣 ⊗ 𝑤.

Proof. We determine 𝜋(𝜑̌)𝑣′ by applying (⋅|𝑤′) ∈ 𝑉∗, where 𝑤′ ∈ 𝑉 is arbitrary. By (3.2) and 4.22, this
equals

􏾙
𝐺/𝑍

𝜑̌(𝑔)(𝜋(𝑔)𝑣′|𝑤′) d𝜇(𝑔) = 𝑑(𝜋)􏾙
𝐺/𝑍

𝑐𝑣⊗𝑤(𝑔−1)(𝜋(𝑔)𝑣′|𝑤′) d𝜇(𝑔)

= 𝑑(𝜋)􏾙
𝐺/𝑍

𝑐𝑣′⊗𝑤′𝑐𝑤⊗𝑣 d𝜇 = (𝑣′|𝑤)(𝑣|𝑤′).

Hence 𝜋(𝜑̌)𝑣′ = (𝑣′|𝑤)𝑣 and defines a linear endomorphism on 𝑉.

4.5 Usage of compact operators
We make systematic use of the formalism in 3.27.

Lemma 4.32. Let 𝜑 ∈ ̃ℳ𝑐(𝐺) and let (𝜋, 𝑉) be a unitary representation of 𝐺. Define 𝜑̌(𝑔) = 𝜑(𝑔−1) in
the sense of measures. Then

∗𝜋(𝜑) = 𝜋 􏿴𝜑̌􏿷 .

In particular, if 𝜑 is real-valued and 𝜑(𝑔) = 𝜑(𝑔−1) for all 𝑔, then 𝜋(𝜑) = ∗𝜋(𝜑).
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Proof. For all 𝑣, 𝑤 ∈ 𝑉,

(𝜋(𝜑)𝑣|𝑤) = 􏾙
𝐺
𝜑(𝑔)(𝜋(𝑔)𝑣|𝑤) = 􏾙

𝐺
𝜑(𝑔)(𝑣|𝜋(𝑔−1)𝑤)

= 􏾙
𝐺
𝜑̌(𝑔)(𝜋(𝑔)𝑤|𝑣) = 􏾙

𝐺
𝜑̌(𝑔)(𝜋(𝑔)𝑤|𝑣)

= 􏿴𝜋 􏿴𝜑̌􏿷𝑤|𝑣􏿷 = 􏿴𝑣|𝜋 􏿴𝜑̌􏿷𝑤􏿷 .

Example 4.33. Now consider 𝐺 acting on 𝐿2(𝐺/𝑍,𝜔) where 𝑍 ⊂ 𝑍𝐺 is closed and 𝜔 ∶ 𝑍 → 𝕊1 is a
chosen continuous homomorphism; call this representation 𝑅. Choose a right Haar measure 𝜇 on 𝐺/𝑍,
with 𝜇 = 𝜇𝐺/𝜇𝑍 as in 1.53 (note that 𝛿𝐺|𝑍 = 1 = 𝛿𝑍). Assume that 𝜑 ∈ 𝐶𝑐(𝐺) d𝜇. It is more or less
routine to verify that

􏿴𝑅(𝜑)𝑓􏿷 (𝑥) = 􏾙
𝐺
𝜑(𝑔)𝑓(𝑥𝑔) d𝜇𝐺(𝑔)

= 􏾙
𝐺/𝑍

𝐾𝜑(𝑥, 𝑦)𝑓(𝑦) d𝜇𝐺/𝑍(𝑔)

with
𝐾𝜑(𝑥, 𝑦) ∶= 𝛿𝐺(𝑥)−1􏾙

𝑍
𝜑(𝑥−1𝑧𝑦)𝜔(𝑧) d𝜇𝑍(𝑧), 𝑥, 𝑦 ∈ 𝐺. (4.3)

Clearly 𝐾𝜑(𝑥, 𝑦) ∶ 𝐺 × 𝐺 → ℂ is continuous and satisfies

𝐾𝜑(𝑥𝑧′, 𝑦𝑧″) = 𝜔(𝑧′)𝜔(𝑧″)−1𝐾𝜑(𝑥, 𝑦), 𝑧′, 𝑧″ ∈ 𝑍.

It expresses 𝑅(𝜑) as an integral transform on 𝐿2(𝐺/𝑍,𝜔) with kernel 𝐾𝜑. This is slightly different from
the usual picture, since a character 𝜔 intervenes.

Lemma 4.34 (Gelfand–Graev–Piatetski-Shapiro). Let (𝜋, 𝑉) be a unitary representation of 𝐺. Suppose
that there exists an approximate identity (𝜑𝑈)𝑈∈𝔑 (recall 3.25) such that each 𝜋(𝜑𝑈) ∶ 𝑉 → 𝑉 is a
compact operator. Then (𝜋, 𝑉) is a completed orthogonal sum of its irreducible subrepresentations.
Moreover, each irreducible constituent appears in this decomposition with finite multiplicity.

Proof. The following arguments are due to Langlands. Set

𝒮 ∶= {sets of mutually orthogonal irreducible subrepresentations ⊂ 𝜋} .

Note that𝒮 is nonempty since ∅ ∈ Σ, and it is partially ordered by set inclusion. Zorn’s lemma affords
a maximal element 𝑆 ∈ 𝒮 : indeed, every chain in 𝒮 has the upper bound furnished by taking union.
Consider the subrepresentation 𝜋0 ∶= ⨁̂𝜎∈𝑆𝜎 of 𝜋. We claim that 𝜋0 = 𝜋.

Let the subrepresentation 𝜋1 of 𝜋 be the orthogonal complement of 𝜋0. We will derive a contradic-
tion from 𝜋1 ≠ {0} by exhibiting an irreducible subrepresentation inside 𝜋1, which would violate the
maximality of 𝑆.

Denote by𝑉1 ⊂ 𝑉 the underlying space of𝜋1. By 3.28, there exists𝜑𝑈 from the approximate identity
such that 𝑇 ∶= 𝜋(𝜑𝑈)|𝑉1 ≠ 0. Note that 𝑇 is a self-adjoint compact operator since 𝜋(𝜑𝑈) is, by 3.25
and 4.32. The spectral theorem for such operators (eg. [8, Theorems 4.25 + 12.23]) implies that 𝑇 has
an eigenvalue 𝜆 ∈ ℝ∖{0}, and the eigenspace 𝑉𝑇=𝜆

1 is nonzero and finite-dimensional. Take a subspace
𝑉♭
1 ⊂ 𝑉𝑇=𝜆

1 of minimal dimension subject to the condition that 𝑉♭
1 = 𝑊𝑇=𝜆 = 𝑊 ∩ 𝑉𝑇=𝜆

1 for some 𝐺-
stable closed subspace 𝑊 ⊂ 𝑉1. Among these 𝑊, their intersection 𝑊min ∶= ⋂{𝑊 ∶ 𝑊𝑇=𝜆 = 𝑉♭

1}
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is the smallest one. We contend that 𝑊min is irreducible. Otherwise there would be an orthogonal
decomposition 𝑊min = 𝐴 ⊕ 𝐵 into nonzero 𝐺-stable closed subspaces, and

𝑉♭
1 = 𝑊𝑇=𝜆

min = 𝐴𝑇=𝜆 ⊕ 𝐵𝑇=𝜆.

The minimality assumption on 𝑉♭
1 implies that 𝑉♭

1 equals 𝐴𝑇=𝜆 or 𝐵𝑇=𝜆, but this contradicts the mini-
mality of 𝑊min.

We conclude that 𝜋 = ⨁̂𝜎∈𝑆𝜎. Suppose that some irreducible unitary representation 𝜎0 (considered
up to isomorphism) intervenes with multiplicity𝑚. Then for every𝜑𝑈 in the approximate identity, 𝜋(𝜑𝑈)
will restrict to 𝑚-copies of 𝜎0(𝜑𝑈). By assumption we may choose 𝜑𝑈 such that 𝜎0(𝜑𝑈) ≠ 0, thus has a
nonzero eigenvalue 𝜆. As the 𝜆-eigenspace of 𝜋(𝜑𝑈) is finite-dimensional,𝑚must be finite as well.

Proposition 4.35. In the setting of 4.33, suppose that 𝐺/𝑍 is compact, then 𝐿2(𝐺/𝑍,𝜔) decomposes into
a completed orthogonal direct sum of irreducible unitary representations, each constituent appearing
with finite multiplicity.

In particular, 𝐿2(𝐺/𝑍,𝜔) = 𝐿2disc(𝐺/𝑍,𝜔) when 𝐺 is unimodular.

Proof. In view of 4.34, it suffices to show that each𝜑 ∈ 𝐶𝑐(𝐺) acts on 𝐿2(𝐺/𝑍,𝜔) via compact operators.
In fact they act as Hilbert–Schmidt operators: a standard result asserts that integral operators on 𝐿2(𝑋)
prescribed by a kernel 𝐾 ∈ 𝐿2(𝑋 × 𝑋) are Hilbert–Schmidt. If 𝑋 is compact then every continuous
𝐾 ∶ 𝑋 × 𝑋 → ℂ is 𝐿2. One can take 𝑋 = 𝐺/𝑍 if 𝜔 = 1, but the arguments with 𝜔 ∶ 𝑍 → 𝕊1 and 𝐾𝜑
satisfying (4.3) are entirely analogous.

4.6 The case of compact groups
Suppose that 𝐺 is a unimodular group and 𝐺/𝑍 is compact. Therefore all irreducible unitary representa-
tions of 𝐺 are square-integrable relative to 𝑍. Fix a Haar measure 𝜇 on 𝐺/𝑍.

Proposition 4.36. Every irreducible unitary representation (𝜋, 𝑉) of 𝐺 is finite-dimensional.

Proof. The argument below is credited to L. Nachbin. Take a nonzero 𝑣 ∈ 𝑉. Define for all 𝑤 ∈ 𝑉 the
vector-valued integral

𝐴𝑤 ∶= 􏾙
𝐺/𝑍
(𝑤|𝜋(𝑔)𝑣)𝑉 ⋅ 𝜋(𝑔)𝑣 d𝜇(𝑔).

By 3.24 we know ‖𝐴𝑤‖𝑉 ≤ ‖𝑤‖𝑉 ⋅ ‖𝑣‖2𝑉 ⋅ 𝜇(𝐺/𝑍), and 𝐴 is easily seen to be 𝐺-equivariant as 𝐺 acts
unitarily. Hence 𝐴 = 𝜆 ⋅ id𝑉 for some 𝜆 ∈ ℂ by 4.7; moreover (𝐴𝑣|𝑣)𝑉 = ∫ |(𝑣|𝜋(𝑔)𝑣)|2 d𝜇(𝑔) implies
𝜆 > 0. Now let𝑉0 ⊂ 𝑉 be any finite-dimensional subspace with the corresponding orthogonal projection
𝐸 ∶ 𝑉 → 𝑉0 ⊂ 𝑉. Consider 𝐸𝐴 restricted to 𝑉0 to obtain

􏾙
𝐺/𝑍

􏿴 ⋅ |𝐸𝜋(𝑔)𝑣􏿷 ⋅ 𝐸𝜋(𝑔)𝑣 d𝜇(𝑔) = 𝜆 ⋅ id𝑉0 ∶ 𝑉0 → 𝑉0.

Inside Endℂ(𝑉0), we take traces on both sides and pass it under the integral sign to deduce

𝜇(𝐺/𝑍)‖𝑣‖2𝑉 ≥ 􏾙
𝐺/𝑍

‖𝐸𝜋(𝑔)𝑣‖2 d𝜇(𝑔) = 𝜆 dim𝑉0.

This bound shows that dim𝑉 is finite.
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Theorem 4.37 (Peter–Weyl: the 𝐿2 version). Let 𝜔 ∶ 𝑍 → 𝕊1 be a continuous homomorphism. There is
an isomorphism of unitary 𝐺 × 𝐺-representations

Coeff ∶ 􏾘̂
𝜋∶irred
𝜔𝜋|𝑍=𝜔

HS(𝑉𝜋) = 􏾘̂
𝜋∶irred
𝜔𝜋|𝑍=𝜔

𝜋 ⊠ 𝜋̄ ∼⟶𝐿2(𝐺/𝑍,𝜔)

(𝑣𝜋 ⊗ 𝑤𝜋)𝜋 ⟼􏾜
𝜋
𝑑(𝜋)𝑐𝑣𝜋⊗𝑤𝜋 ,

and the decomposition is multiplicity-free.
Consequently, the matrix coefficients of irreducible unitary representations with central character 𝜔

span a dense subspace in 𝐿2(𝐺/𝑍,𝜔).
Furthermore, the inverse of Coeff is determined as follows. Let 𝜑 be a matrix coefficient of 𝜋, then

Coeff−1(𝜑) = 𝜋(𝜑̌) ∶= 􏾙
𝐺/𝑍

𝜑̌(𝑔)𝜋(𝑔) d𝜇(𝑔) ∈ Endℂ(𝑉𝜋).

Proof. To obtain the decomposition, simply combine 4.29 with 4.35. The inverse map follows from
4.31.

Remark 4.38. In deriving 4.37, we did not use the fact that each irreducible 𝜋 has finite dimension. In
fact, we can deduce 4.36 from 4.37 as follows. Restrict 𝐺×𝐺-representations to 𝐺× {1} ≃ 𝐺, so that the
spectral decomposition degenerates into an isomorphism of unitary 𝐺-representations

􏾘̂
𝜋
𝜋⊗̂𝑉𝜋 ≃ 𝐿2(𝐺/𝑍,𝜔)

where𝑉𝜋 still carries its Hilbert space structure, but now with trivial𝐺-action. By 4.35 we know 𝜋must
occur in 𝐿2(𝐺/𝑍,𝜔) with finite multiplicity, which is exactly dim𝑉𝜋.

Corollary 4.39. The space 𝐿2(𝐺/𝑍,𝜔) is closed under convolution⋆. Specifically, if each𝑉𝜋⊗̂𝑉𝜋 (resp.
HS(𝑉𝜋)) is endowed with the ℂ-algebra structure from 4.17, then Coeff is an isomorphism between ℂ-
algebras with multiplication given by ⋆ on both sides.

Proof. Since 𝐿2(𝐺/𝑍,𝜔) ⊂ 𝐿1(𝐺/𝑍,𝜔) by compactness, 𝐿2-property is preserved under convolution by
2.3. It remains to check the compatibility of the map with convolution on each 𝜋⊠ 𝜋̄, and this is exactly
the content of 4.30.

Finer properties of the spectral decomposition will be studied in the section on direct integrals.

4.7 Basic character theory
We keep the assumptions from §4.6: 𝐺 is a locally compact group, 𝑍 ⊂ 𝑍𝐺 is closed and𝐺/𝑍 comes with
a chosen Haar measure 𝜇. Fix a continuous homomorphism 𝜔 ∶ 𝑍𝐺 → 𝕊1. Throughout this subsection,
we choose the Haar measure normalized by

𝜇(𝐺/𝑍) = 1.

For endomorphisms of finite-dimensional vector spaces, it is safe to take trace. The following is thus
justified.

Definition 4.40. The character of a finite-dimensional unitary representation (𝜋, 𝑉) of 𝐺 is the contin-
uous function

Θ𝜋 ∶ 𝐺⟶ ℂ
𝑔⟼ Tr 􏿴𝜋(𝑔) ∶ 𝑉 → 𝑉􏿷 .
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We clearly haveΘ𝜋⊕𝜎 = Θ𝜋+Θ𝜎 andΘ𝜋̄ = Θ𝜋. Note thatΘ𝜋 does not involve choices of measures.

Proposition 4.41. The formal degree of an irreducible unitary representation (𝜋, 𝑉) equals dim𝑉.

Proof. Choose an orthonormal basis 𝑣1, … , 𝑣𝑑 of 𝑉. Then 𝜋(𝑔)𝑣1, … , 𝜋(𝑔)𝑣𝑑 form an orthonormal basis
for every 𝑔 ∈ 𝐺. Then 􏿴𝑐𝑣𝑖⊗𝑣𝑗(𝑔)􏿷1≤𝑖,𝑗≤𝑑 is a transition matrix between orthonormal bases, hence unitary.

It follows that ∑𝑖,𝑗 |𝑐𝑣𝑖⊗𝑣𝑗(𝑔)|
2 = 𝑑. Integrate both sides over 𝐺/𝑍 and apply 4.22 to see ∑𝑖,𝑗 𝑑(𝜋)−1 = 𝑑,

that is, 𝑑(𝜋) = 𝑑.

Theorem 4.42. If 𝑣1, … , 𝑣𝑑 is an orthonormal basis of an irreducible unitary representation (𝜋, 𝑉) of
𝐺, then

Θ𝜋(𝑔) =
𝑑
􏾜
𝑖=1
𝑐𝑣𝑖⊗𝑣𝑖(𝑔) ∈ 𝐶(𝐺/𝑍𝐺, 𝜔𝜋).

Furthermore, for any two irreducible unitary representations 𝜋, 𝜎 of 𝐺 with central character 𝜔 on 𝑍,

(Θ𝜋|Θ𝜎)𝐿2(𝐺/𝑍,𝜔) =
⎧⎪⎨
⎪⎩
1, 𝜋 ≃ 𝜎
0, 𝜋 ≄ 𝜎.

Proof. For any linear endomorphism 𝐴 ∶ 𝑉 → 𝑉 we have Tr(𝐴) = ∑𝑑
𝑖=1(𝐴𝑣𝑖|𝑣𝑖). This proves the first

assertion. The second assertion stems from Schur’s orthogonality relations 4.22 and 4.41.

Theorem 4.43. For the adjoint action 𝑓(𝑥)
𝑔
↦ 𝑓(𝑔−1𝑥𝑔) of 𝐺 on 𝐿2(𝐺/𝑍,𝜔), the invariant-subspace is

𝐿2(𝐺/𝑍,𝜔)𝐺 = 􏾘̂
𝜋∶irred
𝜔𝜋|𝑍=𝜔

ℂΘ𝜋.

Proof. We know that 𝜋⊠𝜋̄ = HS(𝑉𝜋) = Endℂ(𝑉𝜋) as𝐺×𝐺-representations by 4.16. The adjoint action
𝑓(𝑥) ↦ 𝑓(𝑔−1𝑥𝑔)mirrors the diagonal𝐺-action on𝜋⊠𝜋̄, which in turn corresponds to𝐴 ↦ 𝜋(𝑔)𝐴𝜋(𝑔)−1
on Endℂ(𝑉𝜋); topology does not matter here since dim𝑉𝜋 < +∞.

Hence the space of 𝐺-invariants matches End𝐺(𝜋) = ℂ ⋅ id by 4.12. In fact, id corresponds to
∑𝑖 𝑣𝑖 ⊗ 𝑣𝑖 ∈ 𝑉𝜋 ⊗ 𝑉𝜋 where 𝑣1, 𝑣2, … is any orthonormal basis; it has norm 𝑑(𝜋) and maps to 𝑑(𝜋)Θ𝜋 ∈
𝐿2(𝐺/𝑍,𝜔) under Coeff.

As in the case of finite groups, characters distinguish representations.

Proposition 4.44. Let 𝜋, 𝜎 be finite-dimensional unitary representations. Then 𝜋 ≃ 𝜎 if and only if
Θ𝜋 = Θ𝜎.

Proof. Decompose 𝜋 and 𝜎 into orthogonal sums of irreducibles, which is possible by 4.6, and then
apply 4.42.

5 Unitary representation of compact Lie groups (a sketch)
Throughout this section, Lie groups are always taken over ℝ. For a Lie group 𝐺 we denote by 𝔤0 its real
Lie algebra, and 𝔤 ∶= 𝔤0 ⊗ℝ ℂ. Denote the center of 𝔤0 as 𝔷0. Below we write 𝑖 = √−1.
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5.1 Review of basic notions
Let 𝐺 be a connected compact Lie group. Below is an incomplete collection of basic results on the
structure of such groups. The reader may consult any available text on compact Lie groups for details,
such as [5].

• The exponential map exp ∶ 𝔤0 → 𝐺 is surjective.

• The Lie algebra is reductive, namely 𝔤0 = 𝔷0 ⊕ [𝔤0, 𝔤0] and [𝔤0, 𝔤0] is semisimple.

• The Lie subalgebra 𝔷0 corresponds to the identity connected component (𝑍𝐺)∘ of 𝑍𝐺, and [𝔤0, 𝔤0]
corresponds to a closed Lie subgroup𝐺𝑠𝑠. We have𝐺 = (𝑍𝐺)∘ ⋅𝐺𝑠𝑠. In particular, 𝐺𝑠𝑠 is a compact
semisimple Lie group.

• A torus means a connected commutative compact Lie group. Therefore the group 𝑍∘𝐺 above is a
torus.

• A theorem of Weyl asserts that every compact semisimple Lie group admits a finite covering which
is a connected, compact and simply connected Lie group. Applied to 𝐺𝑠𝑠, there is a finite covering
of 𝐺 of the form

𝑍 × 𝐺sc ↠ 𝐺, (5.1)

where 𝑍 is a torus and 𝐺sc is a connected and simply connected compact Lie group.

Let 𝑇 be a torus. Since exp ∶ 𝔱 → 𝑇 is an open surjective homomorphism between Lie groups, we
see 𝔱0/ℒ ≃ 𝑇 where ℒ ∶= ker(exp) is a lattice in 𝔱0. Consequently, 𝑇 ≃ (ℝ/ℤ)dim𝑇 as Lie groups.
Define the character lattice as

𝑋∗(𝑇) ∶= Hom(𝑇, 𝕊1) ↪ 𝑖𝔱∗0 ⊂ 𝔱∗

Here Hom is taken in the category of Lie groups, and the inclusion is given by mapping 𝜒 ∶ 𝑇 → 𝕊1 to
the 𝜆 ∈ 𝑖𝔱∗0 such that

𝜒(exp(𝑋)) = exp(⟨𝜆, 𝑋⟩), 𝑋 ∈ 𝔱0;
so 𝜆 is essentially the derivative of 𝜒 at 1. This identifies 𝑋∗(𝑇) with a lattice in 𝑖𝔱∗0, namely

􏿺𝜆 ∈ 𝑖𝔱∗0 ∶ 𝜆(ℒ ) ⊂ 2𝜋𝑖ℤ􏿽 ,

and 𝜒̄ corresponds to −𝜆 whenever 𝜒 corresponds to 𝜆. It is sometimes beneficial to read 𝜒 as “𝑒𝜆”.
Now we consider maximal tori in 𝐺: they are closed tori 𝑇 ⊂ 𝐺, maximal with respect to inclusion.

• The Lie algebra 𝔱0 of a maximal torus 𝑇 is an abelian subalgebra in 𝔤0, and vice versa.

• The maximal tori in 𝐺 are all conjugate.

• Given a maximal torus 𝑇, every element is conjugate to some element of 𝑇. If 𝑡, 𝑡′ ∈ 𝑇 are
conjugate in 𝐺, then they are actually conjugate in the normalizer 𝑁𝐺(𝑇).

• 𝑍𝐺 is contained in the intersection of all maximal tori.

Fix a maximal torus 𝑇 ⊂ 𝐺, there is a decomposition

𝔤 = 𝔱 ⊕ 􏾘
𝛼∈Φ(𝔤,𝔱)

𝔤𝛼

into 𝑇-eigenspaces under the adjoint action Ad ∶ 𝑇 → Endℂ(𝔤). HereΦ = Φ(𝔤, 𝔱) ⊂ 𝑖𝔱∗0 is the set of roots
for (𝔤, 𝔱); all the subspaces 𝔤𝛼 are 1-dimensional. This yields a reduced root system on 𝑖𝔱0. By choosing
a system of positive roots, we decompose Φ = Φ+ ⊔ (−Φ+).
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Given any root 𝛼, the associated coroot is denoted by 𝛼̌ ∈ 𝑖𝔱0.
The positive coroots 𝛼̌ cut out the “acute Weyl chamber”

𝒞+ ∶= 􏾎
𝛼∈Φ+

{𝛼̌ ≥ 0} ⊂ 𝑋∗(𝑇) ⊗ ℝ = 𝑖𝔱∗0;

the elements of 𝒞+ are called dominant. Denote 𝒞 ∘
+ ∶= ⋂𝛼∈Φ+{𝛼̌ > 0}.

The algebraically defined Weyl group Ω(𝔤, 𝔱) is generated by root reflections

𝑠𝛼 ∶ 𝜆 ↦ 𝜆 − ⟨𝜆, 𝛼̌⟩ 𝛼, 𝛼 ∈ Φ

on 𝑖𝔱∗0. It is a finite group. It also acts on 𝑖𝔱0 by duality: we require that ⟨𝑤𝜆,𝑋⟩ = 􏾊𝜆,𝑤−1𝑋􏽽 for all
𝑤 ∈ Ω(𝔤, 𝔱)

It turns out thatΩ(𝔤, 𝔱) together with its action on 𝑖𝔱∗ is canonically isomorphic to the analytically de-
finedΩ(𝐺, 𝑇) = 𝑁𝐺(𝑇)/𝑍𝐺(𝑇). This is essentially done by reducing to the case 𝔤0 = 𝔰𝔲(2). Furthermore,
𝒞+ is a fundamental domain for the Ω(𝐺, 𝑇)-action: we have

𝑖𝔱∗0 = 􏾌
𝑤∈Ω(𝐺,𝑇)

𝑤𝒞+,

𝑤 ≠ 𝑤′ ⟹ 𝑤𝒞 ∘
+ ∩ 𝑤′𝒞 ∘

+ = ∅,
(𝜆 ∈ 𝒞+ ∧ 𝑤𝜆 ∈ 𝒞+) ⟹ 𝑤𝜆 = 𝜆.

The reflections relative to simple roots in Φ(𝔤, 𝔱) generate Ω(𝐺, 𝑇). We write ℓ ∶ 𝑊 → ℤ≥0 for the
length function for Ω(𝐺, 𝑇) with respect to these generators. Recall that (−1)ℓ(⋅) ∶ Ω(𝐺, 𝑇) → {±1} is a
homomorphism of groups.

When 𝐺 is semisimple, we define

𝑃 ∶= {𝜆 ∈ 𝑋∗(𝑇) ⊗ ℝ ∶ ∀𝛼 ∈ Φ, ⟨𝜆, 𝛼̌⟩ ∈ ℤ} ,
𝑄 ∶= 􏾜

𝛼∈Φ+
ℤ𝛼.

It is a general fact about root systems that they are both lattices in 𝑋∗(𝑇) ⊗ ℝ, and

𝑃 ⊃ 𝑋∗(𝑇) ⊃ 𝑄

If𝐺 is simply connected (resp. 𝑍𝐺 = {1}, i.e. adjoint), then𝑃 = 𝑋∗(𝑇) (resp.𝑄 = 𝑋∗(𝑇)). For semisimple
𝐺 in general, 𝑃/𝑋∗(𝑇) ≃ 𝜋1(𝐺, 1). In any case, 𝑃 contains the half-sum of positive roots

𝜌 ∶= 1
2
􏾜
𝛼∈Φ+

𝛼 ∈ 𝑃.

5.2 Algebraic preparations
Definition 5.1. For any Ω-stable lattice Λ ⊂ 𝑋∗(𝑇) ⊗ ℝ, and any commutative ring 𝐴 (usually 𝐴 = ℤ),
the elements of the group 𝐴-algebra 𝐴[Λ] are expressed uniquely in the exponential notation

􏾜
𝜆∈Λ

𝑐𝜆𝑒𝜆, 𝑐𝜆 ∈ 𝐴 ∶ finite sum

subject to the relation 𝑒𝜆𝑒𝜇 = 𝑒𝜆+𝜇 and the usual laws of algebra. The Weyl groupΩ(𝐺, 𝑇) acts𝐴-linearly
by mapping 𝑒𝜆 to 𝑒𝑤𝜆.
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Once an isomorphism Λ ≃ ℤ⊕𝑟 is chosen, ℤ[Λ] is identifiable with ℤ[𝑋±11 , … , 𝑋±1𝑟 ]. In particular,
ℤ[Λ] is a unique factorization domain since it is a localization of ℤ[𝑋1, … , 𝑋𝑟]. Same for ℂ[𝑋∗(𝑇)].

Fix a maximal torus 𝑇 ⊂ 𝐺 together with a system of positive roots Φ+ ⊂ Φ = Φ(𝔤, 𝔱). We will
mainly work inside ℤ[𝑋∗(𝑇)]. Keep in mind that 𝜆 ∈ 𝑋∗(𝑇) (thus the symbol 𝑒𝜆) also signifies the
character 𝑇 → 𝕊1 mapping exp(𝑋) to exp(⟨𝜆, 𝑋⟩), for all 𝑋 ∈ 𝔱0. By linearity, we obtain a map

ℂ[𝑋∗(𝑇)]⟶ 𝐶(𝑇).

As 𝑋∗(𝑇) ⊂ 𝑖𝔱∗0, it is reasonable to define the complex conjugation in ℂ[𝑋∗(𝑇)] by

􏾜
𝜆
𝑐𝜆𝑒𝜆 =􏾜

𝜆
𝑐𝜆𝑒−𝜆.

which extends the complex conjugation on Hom(𝑇, 𝕊1) ⊂ ℤ[𝑋∗(𝑇)].

Lemma 5.2. The map ℂ[𝑋∗(𝑇)] → 𝐶(𝑇) is an embedding of ℂ-algebras, where 𝐶(𝑇) is equipped with
pointwise addition and multiplication. It is Ω(𝐺, 𝑇)-equivariant and respects complex conjugation on
both sides.

Proof. For injectivity, apply the linear independence of characters to 𝑇. The other assertions are inherent
in the construction.

It is convenient to enlarge 𝑋∗(𝑇) to the commensurable lattice Λ ∶= 1
2𝑋

∗(𝑇) to accommodate for
elements like 𝑒𝛼/2, for 𝛼 ∈ Φ. Notice that Λ′ ⊂ Λ implies ℤ[Λ′] ⊂ ℤ[Λ].

Definition 5.3. The Weyl denominator is the element

Δ ∶= 𝑒𝜌 􏾟
𝛼∈Φ+

(1 − 𝑒−𝛼) = 􏾟
𝛼∈Φ+

􏿴𝑒𝛼/2 − 𝑒−𝛼/2􏿷

which lives in ℤ􏿯 12𝑋
∗(𝑇)􏿲, or ℤ[𝑃] if 𝐺 is semisimple.

Several algebraic lemmas are in order.

Lemma 5.4. For every 𝑤 ∈ Ω(𝐺, 𝑇) we have 𝑤Δ = (−1)ℓ(𝑤)Δ.

Proof. It suffices to check this for 𝑤 = 𝑠𝛽 where 𝛽 ∈ Φ+ is a simple root. Use Δ = ∏𝛼∈Φ+(𝑒𝛼/2 − 𝑒−𝛼/2)
and the fact that 𝑠𝛽(𝛼) ∈ Ψ+ for all 𝛼 ∈ Φ+ ∖ {𝛽}, and 𝑠𝛽(𝛽) = −𝛽.

In what follows, it would be convenient to be able to expand (1 − 𝑒−𝛼)−1 in a formal series ∑𝑘≥0 𝑒−𝑘𝛼
for every 𝛼 ∈ Φ+. For every lattice Λ ⊂ 𝑋∗(𝑇) ⊗ ℝ, we can ”complete” ℤ[Λ] in the direction of the
closed cone −𝒞 ⊂ 𝑋∗(𝑇)⊗ℝ (the negative “obtuse Weyl chamber”) generated by −(Φ+) to accommodate
such formal series. Specifically, we start with the monoid algebra ℤ[−𝒞 ∩ Λ], take its adic completion
with respect to the interior ideal generated by −𝒞 ∘ ∩ Λ; finally, invert {𝑒𝜆 ∶ 𝜆 ∈ Λ} to reach the desired
algebra.

Lemma 5.5. Suppose thatΛ is a lattice in 𝑋∗(𝑇)⊗ℝ. If 𝜇, 𝜈 ∈ Λ∖{0} are not proportional, then 1− 𝑒𝜇,
1 − 𝑒𝜈 do not generate the same ideal in ℤ[Λ].

Proof. By working in some “completion” of ℤ[Λ] as explained earlier, we expand

1 − 𝑒𝜇
1 − 𝑒𝜈 = (1 − 𝑒

𝜇)􏾜
𝑘≥0

𝑒𝑘𝜈 =􏾜
𝑘≥0

𝑒𝑘𝜈 −􏾜
𝑘≥0

𝑒𝛼+𝑘𝛽.

If 𝛼, 𝛽 are linearly independent in𝑋∗(𝑇)⊗ℝ, there will be infinitely many nonzero terms, so 1−𝑒𝜈 cannot
divide 1 − 𝑒𝜇 in ℤ[Λ]. The same reasoning applies to 1−𝑒𝜈

1−𝑒𝜇 .
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Lemma 5.6. Suppose thatΛ is anΩ(𝐺, 𝑇)-stable lattice in𝑋∗(𝑇)⊗ℝ such that ⟨Λ, 𝛼̌⟩ ⊂ ℤ for all 𝛼 ∈ Φ.
An element 𝜒 ∈ ℤ[Λ] satisfies 𝑤𝜒 = (−1)ℓ(𝑤)𝜒 for all 𝑤 ∈ Ω(𝐺, 𝑇) if and only if 𝜒 ∈ Δ ⋅ ℤ[Λ]Ω(𝐺,𝑇).

Proof. Given 5.4, it suffices to prove the “only if” direction. Using

• the unique factorization property in ℤ[Λ],

• 1 − 𝑒−𝛼 and 1 − 𝑒−𝛽 do not generate the same ideal since Φ is a reduced root system,

• and the fact that 𝑒𝜇 ∈ ℤ[Λ]× for all 𝜇,

it suffices to show that (1 − 𝑒−𝛼) ∣ 𝜒 for all 𝛼 ∈ Φ+. Write 𝜒 = ∑𝜆 𝑐𝜆𝑒𝜆. By assumption we have

𝑐𝑠𝛼𝜆 = −𝑐𝜆, 𝜆 ∈ Λ

and 𝑠𝛼(𝜆) = 𝜆 − ⟨𝜆, 𝛼̌⟩ 𝛼. Collecting {1, 𝑠𝛼}-orbits, we see that 𝜒 can be expressed as a ℤ-linear sum of
expressions

𝑒𝜆 − 𝑒𝜆−⟨𝜆,𝛼̌⟩𝛼 = 𝑒𝜆 􏿴1 − 𝑒−⟨𝜆,𝛼̌⟩𝛼􏿷 .

The last term is divisible by 1 − 𝑒−𝛼 as 𝑘 ∶= ⟨𝜆, 𝛼̌⟩ ∈ ℤ; handle the cases 𝑘 ≥ 0 and 𝑘 < 0 separately.

Remark 5.7. There exists a lattice Λ ⊂ 𝑋∗(𝑇) ⊗ ℝ such that Λ ⊃ 𝑋∗(𝑇) ∪ {𝜌} and ⟨Λ, 𝛼̌⟩ ⊂ ℤ for all
𝛼 ∈ Φ. For example, in the finite covering 𝜋 ∶ 𝑍 × 𝐺sc ↠ 𝐺 of (5.1), take a maximal torus in 𝑍 × 𝐺sc
of the form 𝑍 × 𝑇sc that surjects onto 𝑇, and consider Λ ∶= 𝑋∗(𝑍 × 𝑇sc). Pull-back induces 𝑋∗(𝑇) ↪ Λ
whereas 𝑋∗(𝑇) ⊗ ℚ = Λ ⊗ ℚ. On the other hand, the roots remain unaltered under pull-back since 𝜋
induces an isomorphism on Lie algebras.

Definition 5.8. Take Λ as in 5.7. For 𝜆 ∈ ℤ[𝑋∗(𝑇)] ∩ 𝒞 +, define

𝜒𝜆 ∶= Δ−1 􏾜
𝑤∈Ω(𝐺,𝑇)

(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌)

= 􏾟
𝛼∈Φ+

(1 − 𝑒−𝛼)−1 􏾜
𝑤∈Ω(𝐺,𝑇)

(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌)−𝜌.

It is a priori an element in the ring of fractions of ℤ[Λ].

We will show in 5.10 that 𝜒𝜆 is independent of the choice of Φ+.

Lemma 5.9. For every 𝜆 ∈ ℤ[𝑋∗(𝑇)], we have 𝜒𝜆 ∈ ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇).

Proof. Fix 𝜆. Clearly ∑𝑤∈Ω(𝐺,𝑇)(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌) varies by (−1)ℓ(⋅) under the Ω(𝐺, 𝑇)-action on ℤ[Λ],
hence lies in Δℤ[Λ]Ω(𝐺,𝑇) by 5.6. On the other hand, the second expression of 𝜒𝜆 can be expanded into a
formal series by completing ℤ[Λ] (thus ℤ[𝑋∗(𝑇)]) in the direction of the closed cone generated by Φ+.

Observe that 𝑤(𝜆 + 𝜌) = 𝑤𝜆 + (𝑤𝜌 − 𝜌) ∈ 𝑋∗(𝑇) as

𝑤𝜌 − 𝜌 = − 􏾜
𝛼∈Φ+
𝑤𝛼∉Φ+

𝛼 ∈ 𝑄.

So the expansion of 𝜒𝜆 in formal series involves only 𝑒𝜇 with 𝜇 ∈ 𝑋∗(𝑇). A comparison with the previous
step shows that 𝜒𝜆 ∈ ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇).

Remark 5.10. It is a standard fact that the choices of Φ+ in Φ form a Ω(𝐺, 𝑇)-torsor under conjugation.
If we pass from Φ+ to 𝑤Φ+, then 𝜒𝜆 is also transported by 𝑤. The result above shows that 𝜒𝜆 is actually
independent of Φ+.
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Write 𝜒𝜆 = ∑𝜇 𝑐𝜇𝑒𝜇 and let Supp(𝜒𝜆) ∶= 􏿺𝜇 ∈ 𝑋∗(𝑇) ∶ 𝑐𝜇 ≠ 0􏿽. As observed above, Supp(𝜒𝜆) is
Ω(𝐺, 𝑇)-stable.

For 𝜆, 𝜆′ ∈ 𝑋∗(𝑇) ⊗ ℝ, we write

𝜆 ≺ 𝜆′ ⟺ 𝜆′ − 𝜆 = 􏾜
𝛼∈Φ+

𝑛𝛼􏼀
≥0

𝛼. (5.2)

Lemma 5.11. Let 𝜆 ∈ 𝑋∗(𝑇). We have 𝜆 ∈ Supp(𝜒𝜆) and it appears with coefficient 1. If 𝜇 ∈ Supp(𝜒𝜆)
then 𝜇 = 𝜆 − ∑𝛼∈Φ+ 𝑛𝛼𝛼 for some coefficients 𝑛𝛼 ∈ ℤ≥0; in particular 𝜇 ≺ 𝜆.

Proof. Work in a suitably completed group algebra to write

𝜒𝜆 = 𝑒−𝜌 􏾟
𝛼∈Φ+

􏿴1 + 𝑒−𝛼 + 𝑒−2𝛼 +⋯􏿷 􏾜
𝑤∈Ω(𝐺,𝑇)

(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌)

= 𝑒𝜆 􏾟
𝛼∈Φ+

􏿴1 + 𝑒−𝛼 + 𝑒−2𝛼 +⋯􏿷 􏾜
𝑤∈Ω(𝐺,𝑇)

(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌)−(𝜆+𝜌).

The basic theory of root systems says 𝑤(𝜆 + 𝜌) − (𝜆 + 𝜌) is always of the form −∑𝛼∈Φ+ 𝑛𝛼𝛼, with
𝑛𝛼 ∈ ℤ≥0, and is trivial only when 𝑤 = 1.

Lemma 5.12. Let 𝜆, 𝜇 ∈ 𝑋∗(𝑇) ∩ 𝒞+. The coefficient of 1 = 𝑒0 in 𝜒𝜆Δ𝜒𝜇Δ equals |Ω(𝐺, 𝑇)| (resp. 0) if
𝜆 = 𝜇 (resp. 𝜆 ≠ 𝜇).

Proof. Look at the coefficient of 𝑒0 in

|Ω(𝐺, 𝑇)|−1􏾜
𝑤
(−1)ℓ(𝑤)𝑒𝑤(𝜆+𝜌) ⋅ 􏾜

𝑣
(−1)ℓ(𝑣)𝑒−𝑣(𝜇+𝜌)

= |Ω(𝐺, 𝑇)|−1􏾜
𝑤,𝑣
(−1)ℓ(𝑤)+ℓ(𝑣)𝑒𝑤(𝜆+𝜌)−𝑣(𝜇+𝜌).

Suppose that 𝑤(𝜌 + 𝜆) = 𝑣(𝜌 + 𝜇). Since 𝜌 + 𝜆, 𝜌 + 𝜇 ∈ 𝒞 ∘
+, this implies 𝑤 = 𝑣 and 𝜆 = 𝜇. Therefore

𝑒0 appears with multiplicity |Ω(𝐺, 𝑇)| in ∑𝑤,𝑣(−1)ℓ(𝑤)+ℓ(𝑣)𝑒𝑤(𝜆+𝜌)−𝑣(𝜇+𝜌).

5.3 Weyl character formula: semisimple case
Still assume 𝐺 to be a connected compact Lie group with maximal torus 𝑇, and choose a system of
positive roots Φ+ ⊂ Φ = Φ(𝔤, 𝔱). Fix the Haar measures 𝜇𝐺 on 𝐺 and 𝜇𝑇 on 𝑇, both of total mass 1.

Notice that since Φ = Φ+ ⊔ (−Φ+),

ΔΔ̄ =􏾟
𝛼∈Φ

(1 − 𝑒𝛼) =􏾟
𝛼∈Φ

(𝑒𝛼 − 1) ∈ ℤ[𝑋∗(𝑇)],

thus defines a continuous function on 𝑇. We denote this function as |Δ|2.

Theorem 5.13 (Weyl’s integration formula). If 𝑓 ∶ 𝐺 → ℂ is measurable, then

􏾙
𝐺
𝑓 d𝜇𝐺 =

1
|Ω(𝐺, 𝑇)|􏽪(𝑇\𝐺)×𝑇

𝑓(𝑔−1𝑡𝑔)|Δ|2(𝑡) d(𝜇 × 𝜇𝑇)(𝑇𝑔, 𝑡)

where 𝜇 = 𝜇𝐺/𝜇𝑇 is the measure on 𝑇\𝐺 prescribed in 1.53.
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Proof. Note that 𝜇(𝐺/𝑇) = 1 by plugging 𝑓 = 1 into (1.9). We shall transform the integral by pulling it
back through the submersion

𝐴 ∶ (𝑇\𝐺) × 𝑇 ⟶ 𝐺
(𝑇𝑔, 𝑥)⟼ 𝑔−1𝑥𝑔.

In doing integration we can work on a dense open subset of𝐺 (resp. 𝑇). Here we consider the regular lo-
cus𝐺reg (resp. 𝑇reg); 𝑡 ∈ 𝑇 lies in 𝑇reg if and only if𝑍𝐺(𝑡) = 𝑇; set𝐺reg = ⋃𝑔∈𝐺 𝑔−1𝑇reg𝑔. Once restricted
to 𝐺reg, the map 𝐴 becomes a Ω(𝐺, 𝑇)-torsor with the left Ω(𝐺, 𝑇)-action by (𝑇𝑔, 𝑥) ↦ (𝑇𝑤𝑔,𝑤𝑥𝑤−1).
Indeed, if 𝑔𝑥𝑔−1 = ℎ𝑦ℎ−1 ∈ 𝐺reg, then 𝑥 is conjugate to 𝑦 through a unique 𝑤 ∈ Ω(𝐺, 𝑇), with represen-
tative 𝑤̃ ∈ 𝐺. Thus 𝑤̃−1ℎ−1𝑔 centralizes 𝑥, so that 𝑤̃−1ℎ−1𝑔 ∈ 𝑁𝐺(𝑇) and has trivial image in Ω(𝐺, 𝑇),
showing that 𝑔𝑥𝑔−1 and ℎ𝑦ℎ−1 differ by a unique 𝑤 ∈ Ω(𝐺, 𝑇).

It remains to pinpoint the Jacobian. Choose the invariant volume forms on 𝔤0, 𝔱0 and 𝔤0/𝔱0 which
match the volume forms for 𝜇𝐺, 𝜇𝑇 and 𝜇 at 1 = exp(0) via the exponential. Decompose 𝔤 = 𝔱 ⊕ 𝔭 with
𝔭 = ⨁𝛼 𝔤𝛼; the latter is actually defined over ℝ, namely 𝔭 = 𝔭0 ⊗ ℂ, and 𝔭0 carries the corresponding
volume form.

Scrutinize the local behavior of 𝐴 around a chosen (𝑇𝑔, 𝑥):

𝔭0 × 𝔱0 ∋ (𝑋, 𝑌) ↦ 𝑔−1 exp(−𝑋) exp(𝑌)𝑥 exp(𝑋)𝑔.

Using the invariance of Haar measures under bilateral translations, it suffices to consider

(𝑋, 𝑌) ↦ exp(−𝑋) exp(𝑌)𝑥 exp(𝑋)𝑥−1

= exp(−𝑋) exp(𝑌) exp(Ad(𝑥−1)𝑋);

by writing Ad(𝑥−1)𝑋 = 𝑥−1𝑋𝑥, its differential at (0, 0) is seen to be

(𝑋, 𝑌) ↦ 􏿴Ad(𝑥−1) − 1􏿷𝑋 + 𝑌.

Relative to our compatible choice of volume forms, the Jacobian factor at (𝑇𝑔, 𝑥) is precisely the absolute
value of det 􏿴Ad(𝑥−1) − 1|𝔭􏿷. To conclude the computation, note that

det 􏿴Ad(𝑥−1) − 1|𝔭􏿷 =􏾟
𝛼∈Φ

(𝛼(𝑥)−1 − 1) = 􏾟
𝛼∈Φ+

|𝛼(𝑥) − 1|2 ;

here 𝛼 is the character corresponding to what we denoted by 𝑒𝛼.

Remark 5.14. By the basic properties of conjugacy classes on𝐺, the inclusion 𝑇 ↪ 𝐺 induces a bijection
𝑇/𝑊 → 𝐺/conj. This induces a matching between invariant functions. A conjugation-invariant function
𝑓 ∶ 𝐺 → ℂ♭ is continuous if and only if its Ω(𝐺, 𝑇)-invariant avatar 𝑓♭ = 𝑓|𝑇 ∶ 𝑇 → ℂ is. We supply a
low-tech proof of this fact as follows.

The “only if” part is obvious. Conversely, assume 𝑓♭ is continuous and consider any sequence 𝑥𝑗 → 𝑥
in 𝐺; write 𝑥𝑗 = 𝑔𝑗𝑡𝑗𝑔−1𝑗 with 𝑡𝑗 ∈ 𝑇. Thanks to compactness, we may pass to subsequences to assume
that the limits 𝑔𝑗 → 𝑔 and 𝑡𝑗 → 𝑡 exist, thus 𝑥 = 𝑔𝑡𝑔−1. We deduce that 𝑓(𝑥𝑗) = 𝑓♭(𝑡𝑗) → 𝑓(𝑡) = 𝑓(𝑥),
whence the continuity of 𝑓.

Denote the spaces of conjugation-invariant functions on 𝐺 as 𝐶(𝐺)𝐺−inv, 𝐿2(𝐺)𝐺−inv and so on.

Corollary 5.15. For 𝜉, 𝜂 ∈ ℂ[𝑋∗(𝑇)]Ω(𝐺,𝑇), we identify them as Ω(𝐺, 𝑇)-invariant continuous functions
on 𝑇, then viewed as a conjugation-invariant continuous functions on 𝐺 by 5.14. Let 𝑐0(𝜉, 𝜂) be the
coefficient of 𝑒0 = 1 in 𝜉Δ𝜂Δ = 𝜉𝜂̄|Δ|2, then

(𝜉|𝜂)𝐿2(𝐺) =
𝑐0(𝜉, 𝜂)
|Ω(𝐺, 𝑇)| .
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Proof. Plug these objects into 5.13 to see

(𝜉|𝜂)𝐿2(𝐺) =
1

|Ω(𝐺, 𝑇)| 􏾙𝑇
𝜉𝜂|Δ|2 d𝜇𝑇 .

Recall that the integral over 𝑇 of a character 𝜒 ∶ 𝑇 → 𝕊1 equals zero (resp. 1 = 𝜇𝑇(𝑇)) when 𝜒 ≠ 1 (resp.
𝜒 = 1). The assertion becomes visible after expanding 𝜉Δ𝜂Δ in ℤ[𝑋∗(𝑇)].

Lemma 5.16. Assume 𝐺 is semisimple. The elements 𝜒𝜆 for 𝜆 ∈ 𝒞 ∘
+ ∩ 𝑋∗(𝑇) form a ℤ-basis for

ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇). Moreover, in terms of the embedding ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇) ↪ 𝐶(𝐺)𝐺−inv of 5.2, they are
orthonormal with respect to (⋅|⋅)𝐿2(𝐺).

Proof. Observe thatℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇) has aℤ-basis of the form 𝜉𝜆 ∶= ∑𝜇∈𝑊⋅𝜆 𝑒𝜇 where 𝜆 ∈ 𝒞 ∘
+ ∩𝑋∗(𝑇).

Write
𝜒𝜆 = 􏾜

𝜇∈𝒞 ∘+∩𝑋∗(𝑇)
𝑐𝜆,𝜇𝜉𝜇, 𝑐𝜆,𝜇 ∈ ℤ.

Then 5.11 entails that 𝑐𝜆,𝜆 = 1 and 𝑐𝜆,𝜇 ≠ 0 ⟹ 𝜇 ≺ 𝜆. Note that the ≺ defined in (5.2) induces a total
order on 𝑋∗(𝑇) ⊗ ℝ since 𝔤 is semisimple. This shows that (𝑐𝜆,𝜇)𝜆,𝜇 is an upper triangular matrix over
ℤ when 𝜆, 𝜇 are enumerated along ≺, with diagonal entries equal to 1. Hence it is invertible, and this
implies that {𝜒𝜆}𝜆 form a ℤ-basis of ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇).

The orthonormal property follows from 5.12 and 5.15.

Now apply the results in §4.6 with 𝑍 = {1}. Given a unitary representation 𝜋 of 𝐺 with dim𝑉𝜋 < ∞,
its restriction to 𝑇 decomposes into irreducibles. By 4.10 this is

𝜋|𝑇 = 􏾘
𝜇∈𝑋∗(𝑇)

𝜇⊕mult(𝜋∶𝜇),

where mult(𝜋 ∶ 𝜇) ∈ ℤ≥0 stands for the multiplicity of 𝜇 in 𝜋|𝑇 . On the other hand, its character Θ𝜋
restricted to 𝑇 gives a finite sum

Θ𝜋(𝑡) = 􏾜
𝜇∈𝑋∗(𝑇)

mult(𝜋 ∶ 𝜇)𝜇(𝑡), 𝑡 ∈ 𝑇.

This function isΩ(𝐺, 𝑇)-invariant. ThereforeΘ𝜋|𝑇 actually yields an element ofℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇), corre-
sponding to ∑𝜇 mult(𝜋 ∶ 𝜇)𝑒𝜇. We call those 𝜇 with nonzero multiplicities as the weights of 𝐺.

The weight-multiplicities {mult(𝜋 ∶ 𝜇)}𝜇∈𝑋∗(𝑇)∩𝒞+ determineΘ𝜋|𝑇 and thenΘ𝜋, which in turn deter-
mines 𝜋 up to isomorphism, by 4.44.

Theorem 5.17 (Weyl character formula). Assume 𝐺 is semisimple. Then the set of 𝜆 ∈ 𝑋∗(𝑇) ∩ 𝒞+
is in bijection with the set of isomorphism classes of irreducible unitary representations 𝜋 of 𝐺. It is
determined by

𝜆 ↔ 𝜋 ⟺ Θ𝜋 = 𝜒𝜆
where we identify Θ𝜋 with an element of ℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇) as above. In fact, 𝜆 is the highest weight of 𝜋
relative to Φ+, namely all the other weights are ≺ 𝜆, see (5.2); it occurs with multiplicity one in 𝜋.

Proof. Given𝜋, we regardΘ𝜋 as an element ofℤ[𝑋∗(𝑇)]Ω(𝐺,𝑇), and expand it into∑𝜆 𝑛𝜆𝜒𝜆 with 𝑛𝜆 ∈ ℤ
using 5.16. Since those 𝜒𝜆 have been shown to be orthonormal, 4.42 yields

1 = (Θ𝜋|Θ𝜋)𝐿2(𝐺) =􏾜
𝜆
𝑛2𝜆.
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Hence there is exact one nonzero 𝑛𝜆, with 𝑛𝜆 ∈ {−1, +1}. We must have 𝑛𝜆 = +1 so that Θ𝜋 = 𝜒𝜆,
otherwise by 5.11, mult(𝜋 ∶ 𝜆) = 𝑛𝜆 = −1 would be absurd. That result also implies the assertion about
highest weight.

All in all, we have an injection 𝜋 ↦ 𝜆 by matchingΘ𝜋 = 𝜒𝜆. Since all theΘ𝜋 form an orthonormal
basis of the Hilbert space 𝐿2(𝐺)𝐺−inv, whilst the 𝜒𝜆 are also orthonormal by 5.16, this map must be
surjective as well.

Proposition 5.18 (Weyl denominator formula). Assume 𝐺 is semisimple. Then

Δ = 􏾜
𝑤∈Ω(𝐺,𝑇)

(−1)ℓ(𝑤)𝑒𝑤𝜌.

Proof. By considerations of the highest weight, the trivial representation of𝐺must correspond to 𝜆 = 0.
The assertion then follows from 𝜒0 = 1.

Theorem 5.19 (Weyl dimension formula). Assume 𝐺 is semisimple. Let 𝜋 be an irreducible unitary
representation with highest weight 𝜆. Then

dim𝑉𝜋 =
∏𝛼∈Φ+ 􏾉𝜆 + 𝜌, 𝛼̌􏽼
∏𝛼∈Φ+ 􏾉𝜌, 𝛼̌􏽼

.

Proof. The dimension equals Θ𝜋(1). Write ΔΘ𝜋 = ∑𝑤(−1)𝑤𝜌𝑒𝑤(𝜆+𝜌). Take appropriate derivatives......

[ NOT FINISHED YET ]

5.4 Extension to non-semisimple groups
[ UNDER CONSTRUCTION ]
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