

ICCM International Consortium of Chinese Mathematicians

Contragredient representations over function fields

李文威 | Wén-Wēi Lǐ 中國科學院 | Chinese Academy of Sciences 丁酉年冬月初十 · 廣州 | Dec 27, 2017; Guǎngzhōu

Desiderata

Let *G* be a connected reductive group over a field *F*, such as GL_n , Sp_{2n} or E_8 . Let $Z \subset G$ be the maximal *F*-split central torus.

- *F* local: classify the irreducible smooth representations of *G*(*F*), temporarily with coefficients in **C**.
- *F* global: decompose the unitary representation $L^2(G(F)\setminus G(\mathbf{A}_F))$ as explicitly as possible, on which $\forall g \in G(\mathbf{A}_F)$ acts by $f(x) \mapsto f(xg)$.

Here $\mathbf{A}_F = \prod_{v:\text{places}}' F_v$. A closely related problem is to decompose

 $L^2(G(F)\backslash G(\mathbf{A}_F)/\Xi), \quad F: \text{global}$

for an appropriate subgroup $\Xi \subset Z(F) \setminus Z(\mathbf{A}_F)$, such that $G(F) \setminus G(\mathbf{A}_F) / \Xi$ has finite volume ("reduction theory").

TODAY: Some tiny aspect (in progress) of this vast terrain.

Langlands parameterization

- Denote by W_F and WD_F the Weil and Weil–Deligne groups associated to F.
- The L-group ^LG = Ĝ ⋊ Gal(F̃|F) (say over C) is defined combinatorially by reversing the root datum of G, where F̃|F is the splitting field of G.
- For *F* local, Langlands proposes a conjectural arrow

 $\Pi(G) := \{ \text{irreps of } G(F) \} / \simeq \to \Phi(G)$

where $\Phi(G)$ is the set of *L*-parameters $\phi : WD_F \to {}^LG$ up to \hat{G} -conjugacy. For any $\phi \in \Phi(G)$, let $\Pi_{\phi} \subset \Pi(G)$ be its fiber, also known as the *L*-packet.

Fundamental issues, for tempered *L*-packets at least: surjectivity of this arrow, internal structures of Π_φ, "stability", relation to inner twists, etc.

- For global *F*, Langlands and Arthur conjectured a decomposition of $L^2_{disc}(G(F)\setminus G(\mathbf{A}_F))$ indexed by global parameters $\psi: L_F \times SL_2 \to {}^LG$ (here: Arthur's SL_2), where L_F is the hypothetical **Langlands group**.
- At any rate, L_F should admit homomorphisms $L_F \twoheadrightarrow W_F$ and $WD_{F_v} \hookrightarrow L_F$ for each place v of F.

The local and global conjectures are inextricably linked.

We will review some recent progresses in due course.

Let *F* be local and *G* be quasi-split. An enhanced version of the **local Langlands correspondence** (LLC) predicates on the internal structure of packets Π_{ϕ} extended à la Vogan across pure inner twists, when ϕ is tempered.

Fix a Whittaker datum w = (U, χ) where U ⊂ G is a maximal unipotent subgroup and χ is a generic character on U(F). Eg. by fixing an F-pinning and an additive character ψ of F.....

Set
$$\mathscr{S}_{\phi} := \pi_0(Z_{\hat{G}}(\operatorname{im} \phi)).$$

Conjecturally, Π_{ϕ} is in bijection with $\operatorname{Irr}(\mathscr{S}_{\phi})$. The trivial representation of \mathscr{S}_{ϕ} should match the unique w-generic member in Π_{ϕ} (cf. the tempered *L*-packet conjecture by Shahidi.)

The case of equal characteristics

Assume char(*F*) = p > 0 and fix a prime $\ell \neq p$. Consider global fields $F = \mathbf{F}_q(X)$ for a geom. irred. smooth proper curve $X_{/\mathbf{F}_q}$.

- We can and do replace \mathbf{C} by $\overline{\mathbf{Q}_{\ell}}$.
- The representation theory is now of an algebraic nature. Algebro-geometric tools are directly available.
- For example, every irrep π (local) or every cusp form (global) can be defined over some finite extension E|Q_ℓ.

The *L*-parameters in question are

$$\phi: \mathbf{W}_F \to {}^L G := \hat{G}(\overline{\mathbf{Q}_\ell}) \rtimes \operatorname{Gal}(\tilde{F}|F),$$

continuous, Frobenius-semisimple and commuting with projections to $\operatorname{Gal}(\tilde{F}|F)$.

Note: We will disregard Arthur's SL_2 and the parameters will always emit from Gal_F or W_F .

The global equal-characteristic case with $G = GL_n$ is accomplished by L. Lafforgue (2002), following the ideas of Drinfeld *et al.*

In the equal-characteristic case, V. Lafforgue arXiv:1209.5352 and Genestier–Lafforgue

arXiv:1709.00978 gave such a parameterization $\pi \mapsto \phi$ for general *G*, which we will review later.

The case of local $F \supset \mathbf{Q}_p$: the Fargues–Scholze program.

arXiv:1602.00999

Contragredients

Let *G*: reductive group over a local field *F*. The LLC is expected to "respect" natural operations on representations, such as parabolic inductions.

The contragredient

If π is an irrep of G(F), then $\check{\pi}$ = the smooth dual endowed with $\langle \check{\pi}(g)\lambda, v \rangle = \langle \lambda, \pi(g^{-1})v \rangle$: still irreducible.

Natural questions

- 1 What is the contragredient in terms of Langlands parameters?
- 2 How about its effect on the members of the packet?

Surprisingly, this has not been discussed in the literature until 2012.

Conjecture (Adams-Vogan, D. Prasad)

If π has *L*-parameter ϕ , then $\check{\pi}$ has *L*-parameter ${}^{L}\theta \circ \phi$, where ${}^{L}\theta$ is the **Chevalley involution** on ${}^{L}G$ (see below).

If $\pi \in \Pi_{\phi}$ corresponds to ρ : an irreducible character of \mathscr{S}_{ϕ} , then $\check{\pi}$ corresponds to $(\rho \circ {}^{L}\theta)^{\vee}$ tensored with an explicit character ι_{-1} of \mathscr{S}_{ϕ} .

Recall that \hat{G} has a Gal_F -stable pinning $(\hat{B}, \hat{T}, ...)$. The Chevalley involution θ of \hat{G} is characterized by

- \bullet preserves that pinning;
- θ acts as $t \mapsto w_0(t^{-1})$ on \hat{T} , where w_0 = the longest Weyl element;
- θ extends canonically to an *L*-automorphism ${}^{L}\theta$ of ${}^{L}G$ (in the obvious manner).

For every semisimple $g \in \hat{G}$, we have $\theta(g) \overset{\text{conj}}{\sim} g^{-1}$.

Construction of ι_{-1} (cf. [Kaletha 2013, §4]) There are canonical homomorphisms

We take the $g_1 \in T^{ad}(F)$ acting as -1 on each \mathfrak{g}_{α} where α is any *B*-simple root. It yields a character of \mathscr{S}_{ϕ} .

Known cases:

- $F = \mathbf{R}$: Adams and Vogan (2016).
- char(F) = 0 and G: quasisplit orthogonal or symplectic group: Kaletha (2013). In this case, the LLC comes from Arthur's endoscopic classification.
- F is non-Archimedean, depth-zero or epipelagic parameters: Kaletha (2013).
- A precondition is to have the Langlands parameterization $\pi \rightsquigarrow \phi,$ or some approximation thereof.

The works of Lafforgue (global)

Let $F = \mathbf{F}_q(X)$ be a global field. Fix a finite closed $N \subset X$ (level structure) $\rightsquigarrow K_N \subset G(\mathbf{A}_F)$: compact open subgroup.

$$\underbrace{\operatorname{Bun}_{G,N}(\mathbf{F}_q)}_{\text{as a set}} = \bigsqcup_{\alpha: \text{some inner twists}} G_{\alpha}(F) \backslash G(\mathbf{A}_F) / K_N, \\
\forall \alpha, \ G(\mathbf{A}_F) = G_{\alpha}(\mathbf{A}_F).$$

Let $E \supset \mathbf{Q}_{\ell}$ be sufficiently large. V. Lafforgue (2012) obtained a decomposition

$$H_{\emptyset,1} := C_c^{\operatorname{cusp}} \left(\operatorname{Bun}_{G,N}(\mathbf{F}_q) / \Xi; E \right) = \bigoplus_{\sigma: \operatorname{Gal}_F \to^L G} \mathfrak{H}_\sigma.$$

Roughly speaking, this is done in two steps.

1 One uses the geometry of the moduli space of $\mu TYKa$ to define **excursion operators** $S_{I,W,x,\xi,\vec{y}}$ where

I: finite set,
$$\vec{\gamma} = (\gamma_i)_{i \in I} \in \text{Gal}_F^I$$
;

■ $W \in \operatorname{Rep}_{E}({}^{L}G^{I})$, and $x \in W$, $\xi \in W^{\vee}$ are \hat{G} -invariant. Re-encoded as $S_{I,f,\vec{\gamma}}$ where $f \in \mathscr{O}(\hat{G} \setminus {}^{L}G^{I} / \!\!/ \hat{G}; E)$, they generate a **commutative** subalgebra \mathscr{B} of $\operatorname{End}_{E}(H_{\emptyset,1})$, hence decompose $H_{\emptyset,1} = \bigoplus_{\nu} \mathfrak{H}_{\nu}$ into generalized eigenspaces.

2 From ν to L-parameters σ : Gal_F → ^LG(Q_ℓ) up to Ĝ-conjugacy: an invariant-theoretic construction, via the so-called ^LG-pseudo-characters.

NOTE. σ is semisimple.

This furnishes the automorphic-to-Galois direction of Langlands' conjecture, for general *G*.

Local case

In arXiv:1709.00978, Genestier and Lafforgue obtained a Langlands parameterization over local fields $F \supset \mathbf{F}_p$.

- This is done by constructing elements 3_{I,f,γ} in Bernstein's center (over v_E) of G, where f ∈ 𝒴(Ĝ\^LG^I ∥Ĝ; v_E) and v ∈ W^I_F.
- Compatible with normalized parabolic induction. Moreover: local-global compatibility up to semi-simplification.
- The apparatus of pseudo-characters attaches to π a semisimple *L*-parameter φ.

Note

We expect that ϕ is the semi-simplification of the "real" *L*-parameter of π .

Sketch of the ideas

Let $I = I_1 \sqcup \cdots \sqcup I_k$ (finite sets) and $W \in \operatorname{Rep}_E({}^LG^I)$.

Geometric Satake \rightsquigarrow perverse sheaves $S_{I,W}^{(I_1,\dots,I_k)}$ on the BD-Grassmannian $\operatorname{Gr}_{I,W}^{(I_1,\dots,I_k)}$, normalized relative to X^I + equivariance.

■ Local models + $S_{I,W}^{(I_1,...,I_k)} \rightsquigarrow$ normalized perverse sheaves $\mathscr{F}_{N,I,W}^{(I_1,...,I_k)}$ on the quotient of the moduli of штука $\operatorname{Cht}_{N,I,W}^{(I_1,...,I_k)}/\Xi$.

- Take truncation parameter μ and !-push-forward to $(X \smallsetminus N)^I$ to obtain $\mathscr{H}_{N,I,W}^{\leq \mu}$: independent of partition.
- Choose geometric generic point η
 → η (resp. η
 ^I → η^I) of X (resp. X^I), and set

$$H_{I,W} := (\varinjlim_{\mu} \mathrm{H}^0 \mathscr{H}_{N,I,W}^{\leq \mu} \Big|_{\Delta(\bar{\eta})})^{\mathsf{Hecke-finite}}$$

Everything is functorial in *W* with various nice properties (eg. "coalescence"), and we recover the earlier $H_{\emptyset,1}$.

- The excursion operator is defined in three stages: creation, π₁(η, η)^I-action on the stalk over η^I, then annihilation.
- The action of $\pi_1(\eta, \bar{\eta})^I$ (or of FWeil $(\eta^I, \overline{\eta^I})$) combines the $\pi_1(\eta^I, \overline{\eta^I})$ -action and the **partial Frobenius morphisms**, via Drinfeld's Lemma.
- The pairing $\langle h, h' \rangle := \int_{\text{Bun}/\Xi} hh'$ on $H_{\emptyset,1}$ also has a sheaf-theoretic origin: it extends to $\mathscr{H}_{N,I,W}^{\leq \mu}$ and arises ultimately from a functorial isomorphism

$$\mathbf{D}S_{I,W}^{(l_1,\dots,l_k)} \xrightarrow{\sim} S_{I,W^{\vee,\theta}}^{(l_1,\dots,l_k)}, \quad \mathbf{D}: \text{normalized Verdier dual}$$

where $W^{\vee,\theta} \in \operatorname{Rep}_E({}^LG^I)$ is the contragredient twisted by the Chevalley involution ${}^L\theta$ of ${}^LG^I$.

Remark. The last ingredient is not necessary for newer versions of [Laf]. Nonetheless.....

Back to the contragredient conjecture

Let $F \supset \mathbf{F}_{p}$ be local and $G_{/F}$ reductive.

Given the work of Genestier–Lafforgue, one can try to address "the first layer" of the Adams–Vogan–Prasad conjecture.

Terminology

The semisimple $\phi : W_F \to {}^LG$ (up to \hat{G} -conjugacy) associated to an irrep π is called the **GL-parameter** of π .

Goal: a coarse form of the Adams–Vogan–Prasad conjecture

Show that if ϕ is the GL-parameter of π , then ${}^{L}\theta \circ \phi$ is the GL-parameter of $\check{\pi}$.

Draw back. We do not look into the internal structures of packets.

The local-global argument

- 1 Reduce to the case π supercuspidal.
- 2 Upon twisting by an unramified character, we may even assume π is integral with central character of finite order, defined over some finite $E|\mathbf{Q}_{\ell}$.
- 3 Hence (G, π) can be globalized into a cuspidal automorphic representation π̂ of G(A_F) (standard argument: Poincaré series or trace formula), invariant under a suitable lattice Ξ.
- 4 Take level N sufficiently deep. By [GL], the local GL-parameters of π are the semi-simplifications of the global parameter.

Next step. Bring contragredients into the picture.

1 Under the invariant pairing $\langle h, h' \rangle = \int_{\operatorname{Bun}_{G,N}(\mathbf{F}_q)/\Xi} hh'$, we see that $\mathring{\pi}$ must pair non-degenerately with some other cuspidal automorphic representation $\mathring{\pi}'$. As irreducible $G(\mathbf{A}_F)$ -representations:

$$(\mathring{\pi}')^{K_N} \neq \{0\}, \quad \mathring{\pi}' \simeq \mathring{\pi}^{\vee}.$$

2 If $\pi^{K_N} \hookrightarrow \mathfrak{H}_{\nu}$ for some character $\nu : \mathscr{B} \to \overline{\mathbf{Q}_{\ell}}$, then $(\pi')^{K_N} \hookrightarrow \mathfrak{H}_{\nu^*}$ where

$$\nu^*(S) = \nu(S^*), \quad S \in \mathcal{B},$$

setting $S^* :=$ the **transpose** of *S* with respect to $\langle \cdot, \cdot \rangle$.

3 So we have to describe the transpose of excursion operators. It turns out that

$$S^*_{I,f,\vec{\gamma}} = S_{I,f^\dagger,\vec{\gamma}^{-1}}, \quad f^\dagger(\vec{x}) = f\left({}^L \theta(\vec{x})^{-1}\right).$$

Ideas for computing the transpose

Consider $S_{I,W,x,\xi,\vec{\gamma}}$ and recall its construction.

- The transposes of the creation and annihilation operators have been given in [Laf].
- It remains to show that the duality pairing on $\varinjlim_{\mu} \mathscr{H}_{N,I,W}^{\leq \mu} |_{\overline{\eta^{I}}}$ is invariant under $\pi_{1}(\eta, \overline{\eta})^{I}$.
- Furthermore: reduce to the invariance under partial Frobenius morphisms (recall Drinfeld's Lemma).
- Unsurprisingly, it boils down to the invariance of $\mathbf{D}S_{I,W}^{(I)} \simeq S_{I,W^{\vee,\theta}}^{(I)}$ under the Frobenius morphism.

The statement about $S^*_{I,f,\vec{\nu}}$ follows directly.

The contragredient conjecture for GL-parameters is deduced as follows.

- Let σ be the *L*-parameter of $\hat{\pi}$ furnished by [Laf].
- Recall: $(\mathring{\pi}')^{K_N}$ lives inside the generalized eigenspace \mathfrak{H}_{ν^*} of $\nu^* : \mathscr{B} \to \overline{\mathbf{Q}_{\ell}}$.
- One infers from the theory of pseudo-characters that ν^{*} gives rise to ^Lθ ∘ σ: the (global) L-parameter of ^{*}π'.
- Local-global compatibility, etc. $\implies \check{\pi}$ has GL-parameter ${}^{L}\theta \circ \phi$, where $\phi = \sigma^{ss}$ is the GL-parameter of π .

Duality involutions: Heuristic

Let F be a local field.

Fact (Gelfand-Kazhdan)

For $\operatorname{GL}_n(F)$, the automorphism $g \mapsto {}^tg^{-1}$ takes any irrep π to $\check{\pi}$.

MVW involutions (Mœglin–Vignéras–Waldpsurger)

For any classical group *G*, there is an involution *G* taking any smooth irrep π of *G*(*F*) to $\check{\pi}$.

- For $G = Sp_{2n}$, the MVW involution is simply the conjugation by some $g \in GSp_{2n}(F)$ with similitude factor -1.
- The conjectural generalization below is due to D. Prasad arXiv:1705.03262

Let *G* be quasisplit over *F*. Fix an *F*-pinning (B, T, ...) of *G* and fix $\psi: F \to \overline{\mathbf{Q}_{\ell}}^{\times}$.

Definition (D. Prasad)

Set $\iota_G := \iota_{-1} \circ \theta$ where

- \bullet θ is the Chevalley involution of *G*,
- ι_{-1} comes from the $T^{ad}(F)$ -action, as seen earlier; it "flips" the pinning.

It is defined over *F* and *a priori* depends on the pinning.

Conjecture (D. Prasad)

Let π be a generic irrep of G(F) relative to the pinning and ψ . Then $\pi \circ \iota_G \simeq \check{\pi}$.

This is actually a coarse form of Prasad's original statement. When $F = \mathbf{R}$, it is essentially done by Adams, and ι_G is independent of pinnings.

Motivating the conjecture

Fix $\overline{\mathbf{Q}_{\ell}} \simeq \mathbf{C}$. Assume LLC for *G* and let Π_{ϕ} be a tempered *L*-packet for *G*.

The tempered *L*-packet conjecture (Shahidi)

There exists exactly one generic member $\pi \in \Pi_{\phi}$, with respect to the given pinning and ψ .

Let $\pi \in \Pi_{\phi}$ be generic as before. Assume

- the contragredient conjecture for π ;
- the tempered *L*-packet conjecture for Π_{ϕ} ;
- the local **trivial functoriality** with respect to the *L*-automorphism ${}^{L}\theta : {}^{L}G \rightarrow {}^{L}G$. (Note: ${}^{L}\theta$ is "dual" to ι_{G}).

Then one can show $\pi \circ \iota_G \simeq \check{\pi}$.

Idea: Both sides are generic relative to the pinning and ψ , and belong to $\Pi_{L_{\theta \circ \phi}}$.

Remark

Let $F \supset \mathbf{F}_p$ and state everything in terms of GL-parameters. Assuming the tempered *L*-packet conjecture for Π_{ϕ} (uniqueness part only), one can prove Prasad's conjecture for $\pi \in \Pi_{\phi}$.

NOTE: the (global) "trivial functoriality" is done in [Laf].

Caveat

As the GL-parameters are semi-simplifications of *L*-parameters, the tempered *L*-packet conjecture will only hold for a limited class of $\phi : W_F \rightarrow {}^LG$.

EXAMPLE: the regular supercuspidal *L*-parameters (Kaletha).

Question

For $F \supset \mathbf{Q}_p$, can these techniques be adapted to the setting of Fargues–Scholze?

Updated on May 9, 2018