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§Shimura data and ∇H-data

I A Shimura datum (G,X ,K )
- a reductive group G over Q with center Z ,
- G(R)-conjugacy class X of homomorphisms S→ GR for the
Deligne torus S,
- A compact open sub-group K ⊆ G(Af ),
subject to certain conditions...

(G,X ,K ) ShK (G,X ) = G(Q)\X ×G(Af )/K
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I Let’s wish a modular interpretation exists...

“In order to be able to realize all but a handful of Shimura varieties
as moduli varieties, we shall need to replace algebraic varieties and
algebraic classes by more general objects, namely, by motives”
(Milne 198?)

inspired by a former observation of P. Deligne

“Pour interpréter des structures de Hodge de type plus compliqué,
on aimerait remplacer les variétés abéliennes par des “motifs”
convenables, mais il ne s’agit encore que d’un rêve.” (Deligne
1979, p. 248)
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1979, p. 248)



§The Journey to the Dreamland of FF
Category Of Motives / FF

Q! smooth proj. curve C/Fq

There are certain candidates for the true category of motives over
function fields.

I Category of t-motives (Anderson 1986)
Def: A := Fq[t], L an A-field via A→ L, t 7→ θ (char.
morphism). An effective t-motive of rk r over L is a pair
M = (M, τ)
- a free and f.g. AL-module M of rank r , and
- τ : σ∗M := M ⊗AL,σ∗ AL → M (s. th. (t − θ)d annihilates
coker τ).
Here σ∗ : AL → AL, a⊗ b 7→ a⊗ bq.
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I Taelman’s caegory tM◦ (Dissertation 200?)

- Hom(−,−)⊗ Q (Q = Frac(A))
- formally invert (tensor powers of) the Carlitz motive C.

C Carlitz motive! M(Gm)

The resulting category tM◦ together with the obvious fiber
functor ω : tM◦ → Q − vector spaces provides a tannakian
category which is a candidate for the analogous motivic category
over function fields. Still one may naturally want:
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- multiplication by a Dedekind domain which is strictly bigger
than Fq[t],

- to construct a category analogous to the category of (mixed)
motives over a general base, and

- to geometrize this category.

To handle the above

1. replace t-motives with A-motives, make A-motives completed
at the place infinity ∞ of a curve C and replace M by vector
bundle M/CL

2. Let’s invert further Carlitz(-Hayes) motives (this corresponds
to introducing further characteristic sections si : Spec L→ C )

One can then easily see that the resulting category is equivalent
with the following category
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§Cat Of C-Motives

I Definition
Let C be a sm. proj. curve over Fq. Fix ν := (νi ) ∈ Cn. Let
S ∈ Sch/Fq. A C -motive M with char ν over S is a tuple
(M, τM)

- a loc. free sheaf M of OCS
-mod of finite rk,

- τM : σ∗Ṁ→̃Ṁ where Ṁ is the restriction of M to ĊS

(Ċ = C \ ν), and σ = id × σS where σS : S → S is the abs.
Frob./Fq.

The set of quasi-morphisms QHom(M,N ) is given by

σ∗Mη
τM //

��

Mη

��
σ∗Nη

τN // Nη

We denote the resulting category by Mot
ν
C (S).
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I Theorem (Analog of Jannsen’s semisimplicity result)

The category Mot
ν
C (Fq) with the obvious fiber functor ω is a

semi-simple tannakian category. In particular the associated
motivic group P is pro-reductive.

Proof.
cf. [E. and Urs Hartl; Cat of C-motives over finite fields]

I Remark
For this category one can establish
-realization functiors
-Tate conjecture
-analog for Honda-Tate theory and etc...
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Still:
-Want to geometrize this cat!
-Want to equip Mot

ν
C (S) with G-structure for an affine flat group

scheme over C of f.t.!

I Definition (Global G-shtuka)
A global G-shtuka G over an Fq-scheme S is a tuple (G, s, τ)
consisting of

- a G-bundle G over CS ,
- an n-tuple s := (si ) ∈ C n(S) of (characteristic) sections and
- an isomorphism τ : σ∗G|CS\Γs

→̃G|CS\Γs
.

We let ∇nH1(C ,G) denote the stack whose S-points
parameterizes global G-shtukas over S .

I Theorem
∇nH1(C ,G) is an ind-DM-stack over Cn which is ind-separated
and locally of ind-finite type.

Proof.
cf. [E. and Urs Hartl, Uniformization of the moduli stacks of
G-shtukas; theorem 3.15]
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I Remark (Functoriality)

The assignment
(C ,G) 7→ ∇nH1(C ,G)

is functorial on (C ,G). In particular ρ : G→ G′ induces

ρ∗ : ∇nH1(C ,G)→ ∇nH1(C ,G′).

which is induced by

ρ∗ : H1(C ,G)→ H1(C ,G′), G 7→ G ×G G′.

between the stack of G-bundles and G′-bundles over C .
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§Realization Functors I

I Definition (Étale realization)

Fix ν = (νi ) ∈ Cn. Let Aν denote the completion of OCn at ν and
let ∇nH1(C ,G)ν = ∇nH1(C ,G)×Cn Spf Aν . Assume that S is
connected, fix a geometric base point s of S . There is the
following étale realization functor

ων(−) : ∇nH1(C ,G)ν(S)→ Funct⊗
(
RepG,ModAν [π1(S ,s)]

)
G 7→ ων(G) : ρ 7→ lim

←−
D⊆Ċ

(ρ∗G|Ds
)τ ⊗Oν Aν

Here -π1(S , s̄) is the algebraic fundamental group of S .
-Ds is finite over s = SpecF for an algebraically closed field F, and
ρ∗G|Ds

is equivalent to (M, τ) where M is a free ODs
-modules.

Then (ρ∗G|Ds
)τ := {m ∈ M : τ(σ∗m) = m} denotes the

τ -invariant
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§Level Structure

I Definition (H-level structure)

Assume that S ∈ NilpAν
is connected and fix a geometric point s

of S . For a global G-shtuka G over S let us consider the set of
isomorphisms of tensor functors

Isom⊗(ων(G)(−), ω◦(−)),

where ω◦ : RepAν G→ ModAν denote the neutral fiber functor.
The set Isom⊗(ων(G)(−), ω◦(−)) admits an action of
G(Aν)× π1(S , s̄) where G(Aν) acts through ω◦(−) by tannakian
formalism and π1(S , s̄) acts through ων(G)(−). For a compact
open subgroup H ⊆ G(Aν) we define a rational H-level structure γ̄
on a global G-shtuka G over S ∈ NilpAν

to be a π1(S , s̄)-invariant

H-orbit γ̄ = Hγ in Isom⊗(ων(G)(−), ω◦(−)).
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§Realization Functors II
Crystalline realizations

I Definition (Loop groups/ affine flag varieties)

Let P be a smooth affine group scheme of finite type over
D = Spec k[[z ]], P the generic fiber of P over Ḋ := Spec k((z)).

1. The group of positive loops (resp. loops) associated with P

L+P(R) := P(R[[z ]]) := P(DR) := HomD(DR ,P) ,

(resp.LP(R) := P(R((z))) := P(ḊR) := HomḊ(ḊR ,P)) ,

where we write R((z)) := R[[z ]][ 1
z ] and ḊR := SpecR((z)). It is

representable by a scheme (resp. an ind-scheme) of finite type
(resp. ind-finite type) over k.

2. The affine flag variety F`P is defined to be the ind-scheme
representing the fpqc-sheaf associated with the presheaf

R 7−→ LP(R)/L+P(R) = P (R((z))) /P (R[[z ]]) .

on the category of k-algebras
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z ] and ḊR := SpecR((z)). It is

representable by a scheme (resp. an ind-scheme) of finite type
(resp. ind-finite type) over k .

2. The affine flag variety F`P is defined to be the ind-scheme
representing the fpqc-sheaf associated with the presheaf

R 7−→ LP(R)/L+P(R) = P (R((z))) /P (R[[z ]]) .

on the category of k-algebras



§Realization Functors II
Crystalline realizations

I Definition (Loop groups/ affine flag varieties)
Let P be a smooth affine group scheme of finite type over
D = Spec k[[z ]], P the generic fiber of P over Ḋ := Spec k((z)).
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I Definition (Local P-shtuka)

a) A local P-shtuka over S ∈ Nilpk[[ζ]] is a pair L = (L+, τ̂)
consisting of

- a L+P-torsor L+ on S and
- an isomorphism of the associated loop group torsors
τ̂ : σ̂∗L → L.
where (H1(S , L+P)→ H1(S , LP), L+ 7→ L).

b) A morphism (quasi-isogeny) between
L := (L+, τ)→ L′ := (L′+, τ ′) is a commutative diagram

σ∗L τ //

��

L

��
σ̂∗L′ τ ′ // L′

c) We denote the resulting category by LocP-Sht(S).
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Definition (Crystalline realization functors)

For a place ν on C let Pν := G×C Spec ÔC ,ν and let Pν be its
generic fiber.
There is a crystalline realization functor

ωνi (−) : ∇nH1(C ,G)ν(S)→ LocPνi -Sht(S)

given by sending G to its formal completion Ĝ along Γsi ⊆ CS and
then using the following observation

Cat of formal P̂-torsors/DR ↔ Cat of L+P-torsors

Here P̂ is the completion of P at V (z).
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§Boundedness Conditions

I Definition (naive definition for BC)

Let P be a smooth affine group scheme over D.

a) A closed ind-subscheme Ẑ of F̂`P := F`P×̂k Spf k[[ζ]] which is
stable under the left L+P-action, such that
Z := Ẑ ×Spf k[[ζ]] Spec k is a quasi-compact subscheme of F`P
is called a bound.

b) Let Ẑ be a bound with reflex ring RẐ . Let L+ and L′+ be
L+P-torsors over a scheme S in NilpRẐ

and let δ : L → L′ be
an isomorphism of the associated LP-torsors. We consider an
étale covering S ′ → S over which trivializations
α : L+ → (L+P)S′ and α′ : L′+ → (L+P)S′ exist. Then the
automorphism α′ ◦ δ ◦ α−1 of (LP)S′ corresponds to a

morphism S ′ → LP×̂k Spf RẐ . We say that δ is bounded by Ẑ
if for any such trivialization and for all finite extensions R of
k[[ζ]] over which a representative ẐR of Ẑ exists the induced
morphism
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S ′ → F̂`P
factors through ẐR .

c) a local P-shtuka (L, τ̂) is bounded by Ẑ if the isom τ̂−1 is

bounded by Ẑ . Assume that Ẑ = S(ω)×̂k Spf k[[ζ]] for a

Schubert variety S(ω) ⊆ F`P , with ω ∈ W̃ . Then we say that
δ is bounded by ω.

I Remark

1. The above definition is a naive definition of BC. For the true
definition one needs to replace Ẑ with an equivalence class [Ẑ ]

of subschemes of F̂`P,R . Here R is a finite extension of discrete

valuation rings k[[ζ]] ⊂ R ⊂ k((ζ))alg. The class [Ẑ ] has a
representative over a minimal ring R[Ẑ ] ( called reflex ring)

2. There is a global version of the BC, which we obtain roughly
by replacing F`P by B-D affine Grassmannian GRn(C ,G), and

Ẑ ⊆ F̂`P,R by global Schubert varieties Z ⊆ GRn(C ,G). Then
BC [Z] determines a minimal curve of definition CZ called
reflex curve.
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representative over a minimal ring R[Ẑ ] ( called reflex ring)
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§∇H-data

In analogy with the Shimura varieties side we define

I Definition (∇H-data)

a) A ∇H-datum (G, Ẑ ,H) consists of
-a smooth affine group scheme G over a sm. proj, curve C / Fq,
-an n-tuple of (local) bounds Ẑ := (Ẑνi )i=1...n at the fixed
characteristic places νi ∈ C and
-a compact open subgroup H ⊆ G(AνC ).
b) There is a functorial assignment

(G, Ẑ ,H) ∇Ẑ ,H
n H1(C ,G)

where ∇Ẑ ,H
n H1(C ,G)(S) parametrizes (G, γ) such that ωνi (G) is

bounded by Ẑνi .
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characteristic places νi ∈ C and
-a compact open subgroup H ⊆ G(AνC ).
b) There is a functorial assignment
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characteristic places νi ∈ C and
-a compact open subgroup H ⊆ G(AνC ).
b) There is a functorial assignment
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-a smooth affine group scheme G over a sm. proj, curve C / Fq,
-an n-tuple of (local) bounds Ẑ := (Ẑνi )i=1...n at the fixed
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Theorem
∇Ẑ ,H

n H1(C ,G) is a formal DM-stack over ŘẐ .



Similarly

I Definition (Local ∇H-data)

A local ∇H-datum is a tuple (P, Ẑ , b) consisting of

- A smooth affine group scheme P over D with connected
reductive generic fiber P,

- A local bound Ẑ ,
- A σ-conjuagacy class of an element b ∈ P(k((z))).



I Definition (R-Z spaces for local P-shtukas)

Let Ẑ = [ẐR ] be a bound with reflex ring ŘẐ .
Fix a local P-shtuka L over k .

Define the Rapoport-Zink space for (bounded) local P-shtukas, as
the space given by the following functor of points

M̌Ẑ
L : (NilpŘẐ

)o → Sets

S 7→
{

Isomorphism classes of (L, δ) : where:

− L is a local P-shtuka

over S bounded by Ẑ and

− δ : LS → LS a quasi-isogeny
}
.

Here S := V (ζ) ⊆ S .
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)o → Sets

S 7→
{

Isomorphism classes of (L, δ) : where:

− L is a local P-shtuka

over S bounded by Ẑ and
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I Theorem (Representablity Of R-Z spaces for local P-shtukas)

The functor M̌Ẑ
L is ind-representable by a formal scheme over

Spf ŘẐ which is locally formally of finite type and separated. It is
an ind-closed ind-subscheme of F`P×̂Fq Spf ŘẐ . Its underlying
reduced subscheme equals a closed ADLV XZ (b), which is a
scheme locally of finite type and separated over F, all of whose
irreducible components are projective.

Proof.
cf. [E. and Urs Hartl, Local P-sht and their relation... Theorem
4.18]

Definition
The datum (P, Ẑ , b) determines the reflex ring ŘẐ , and a local
P-shtuka L := (L+P, bσ̂). This establishes

(P, Ẑ , b) M̌(P, Ẑ , b) := M̌Ẑ
L , (1)

which assigns the Rapoport-Zink space M̌(P, Ẑ , b) := M̌Ẑ
L to a

local ∇H-datum (P, Ẑ , b).
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I Theorem (Local Model Theorem I)

Fix a global ∇H-datum (G, Ẑ ,H). Assume that G is smooth over
C . Then there is the following roof

∇H,Ẑ
n H̃1(C ,G)Rν

∇H,Ẑ
n H(C ,G)1

Rν

∏
i Ẑνi ,Rνi

,

π�� πloc ��

(2)

Let y be a geometric point of ∇H,Ẑ
n H1

Rν
. The

∏
i L

+Pνi -torsor

π : ∇H,Ẑ
n H̃1

Rν
→ ∇H,Ẑ

n H1
Rν

admits a section s, locally over an étale

neighborhood of y , such that the composition πloc ◦ s is formally
étale.
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n H1
Rν

admits a section s, locally over an étale

neighborhood of y , such that the composition πloc ◦ s is formally
étale.



I Theorem (Local Model Theorem I)
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I Theorem (Local Model Theorem II)

To a local ∇H-datum (P, Ẑ , b) one can assign a roof

M̃

M̌(P, Ẑ , b) Ẑ ,

π

��

πloc

��

(3)

that satisfies the following properties

1. the morphism πloc is formally smooth and
2. M̃ is an L+P-torsor under π : M̃ → M̌(P, Ẑ , b). It admits a

section s ′ locally for the étale topology on M̌(P, Ẑ , b) such
that πloc ◦ s ′ is formally étale.
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Idea of the proof

The proof uses deformation theory of global G-shtukas. cf. [E. and
S. Habibi Loc models for moduli of global G-shukas] and [E. Local
model for moduli for local P-shtukas]

I Proposition (Rigidity of quasi-isogenies for local P-shtukas)

Let S be a scheme in Nilpk[[ζ]] and let j : S̄ → S be a closed
immersion defined by a sheaf of ideals I which is locally nilpotent.
Let L and L′ be two local P-shtukas over S . Then

QIsogS(L,L′)→ QIsogS̄(j∗L, j∗L′), f 7→ j∗f

is a bijection of sets.

Proof.
cf. [E. and Urs Hartl, Local P-sht and their relation...Proposition
2.11].
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Let S ∈ NilpAν
and let j : S → S be a closed subscheme defined

by a locally nilpotent sheaf of ideals I. Let G be a global G-shtuka
∇nH1(C ,G)ν(S̄). We let DefoS(Ḡ) denote the category of
infinitesimal deformations of G over S . More explicitly DefoS(Ḡ) is
the category of lifts of G to S , which consists of all pairs
(G, α : j∗G → G) where G belongs to ∇nH1(C ,G)ν(S), and α is
an isomorphism of global G-shtukas over S .
Similarly for a local P-shtuka L̄ in ShtDP (S) we define the category
of lifts DefoS(L̄) of L̄ to S .

I Theorem
Let Ḡ := (Ḡ, τ̄) be a global G-shtuka in ∇nH1(C ,G)ν(S̄).Then
the functor

DefoS(Ḡ)→
∏
i

DefoS(ωνi (Ḡ)) ,

is an equivalence of categories.

Proof.
cf. [E. and Hartl, Relation between global and local P-shtukas]
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Number Fields Function Fields

The group G over Q The group G over C

characteristic p characteristic ν = {νi}
Gp := G×Q Qp Pνi
S→ GR n-tuple of boundedness condi-

tions Ẑ

A compact open subgroup K ⊆
G(AQ)

A compact open subgroup H ⊆
G(AC )

Shimura data (G,X ,K ) ∇H-data (G, Ẑ ,H)

reflex ring OE of the reflex field
E = E (G ,X ,K )

reflex ring RẐ

The canonical integral model
SK

Moduli stack ∇H,Ẑ
n H1(C ,G)ν

Local Shimura data
(P, {µ}, [b])

Local ∇H-data (P, Ẑ , [b])

p-divisible groups and (iso-
)crystals (with additional struc-
ture)

Local (P-)Shtukas



Rapoport-Zink space
M̌(P, {µ}, [b]) over the
reflex ring OEµ

Rapoport-Zink space
M̌(P, Ẑ , [b]) over the re-
flex ring RẐ

The local model Mloc The scheme Ẑ

The local Model diagram

M̃(G , {µ}, [b])

M̌(G , {µ}, [b]) Mloc ,

π

��

πloc

��

The local Model diagram

M̃(P, Ẑ , [b])

M̌(P, Ẑ , [b]) Ẑ ,

π

��

πloc

��

The category of motives
Mot(Fq) with realization
functors ω`(−) and ωp(−)

The category of C -motives
Mot

ν
C (Fq) with realization

functors ων(−) and ωνi (−)

fiber functor ω(−) :
Mot(Fq) → Q-vect. sp.
(conjectural)

The fiber functor ω :
Mot

ν
C (Fq)→ Q-vect. sp.

Honda-Tate Theory W (p∞) Honda-Tate theory Wν

(quasi-)motivic galois gerb Q The motivic groupoid P :=
Mot

ν
C (F)(ω)



The uniformization map

M̌(G , {µ}, [b])× G (Ap
f )/K

Θ ↓

SK

The uniformization map∏
i

M̌(Pνi , Ẑνi , bi )×G(AνQ)/H

Θ ↓

∇H,Ẑ
n H1(C ,G)ν

Kottwitz-Rapoport (resp. New-
ton) stratification

Kottwitz-Rapoport (resp. New-
ton) stratification

. .

. .

. .

The analogy between Shimura varieties and moduli of G-Shtukas



§Some Applications

I Flatness, Cohen-Macaulayness and Normality of ∇H,Ẑν
n H1

Rν
over its

reflex ring.

I ss-trace of Frobenius

tr ss(Frobx ;RΨ∇
ẐH

x (Q`)) = tr ss(Frobr ;RΨẐ
y Q`).

I Kottwitz-Rapoport Stratification of ∇H:

∇H,Ẑν
n H̃1

Rν

∇H,Ẑν
n H1

Rν

∏
i Ẑνi ,Rνi

,

π�� πloc ��

(4)

induces a natural stratification {(∇H,Zν
n H1)λ}λ. Namely for every

algebraically closed field L over Fq we have
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λG,ν : {(∇H,Zν
n H1

s )λ}λ → |[
∏
ν∈ν

L+Pν\Ẑν ]| =:
∏
ν∈ν

Adm(Ẑν)

⊆
∏
ν

W̃Pν .

Set KRω := λ−1
G,ν(ω). The incidence relation between these strata

is given by the obvious partial order on the product
∏
ν W̃Pν ,

induced by the natural Bruhat order.

I (IC-cohomology complexes)

The IC-sheaves IC (∇H,Ẑν
n H1

s ) and the restriction of IC (Hecke
Ẑν
s )

coincide up to some shift and Tate twists. [E. and Habibi 2019]
-Recall that the stack Hecken(C ,G) and GRn ×H1(C ,G) as
families over Cn ×H1(C ,G) are locally isomorphic with respect to
the étale topology on Cn ×H1(C ,G).

I Lang’s cycles on M̌η



λG,ν : {(∇H,Zν
n H1

s )λ}λ → |[
∏
ν∈ν
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