Applications of Hecke Algebra in the Representation Theory of Reductive Groups

Ma, Jia-Jun

School of Mathematical Sciences Xiamen University Department of Mathematics Xiamen University Malaysia

> BICMR 4 Sept, 2023

Two questions

- Counting special unipotent representations of real reductive groups.
- Determining the theta correspondence over finite fields.
- Why discuss them in a single talk?

Barbasch-Vogan's definition of special unipotent representation

G: a real reductive group \leadsto Langlands dual \mathbf{G}^{\vee} . Nilpotent orbit $\check{\mathcal{O}}$ of \mathbf{G}^{\vee} .

- \leadsto an infinitesimal character $\lambda_{\mathcal{O}^{\vee}}$
- \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}}$ with inf. char. $\lambda_{\check{\mathcal{O}}}$
- *Definition* (Barbasch-Vogan):

An irreducible G-repn. is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

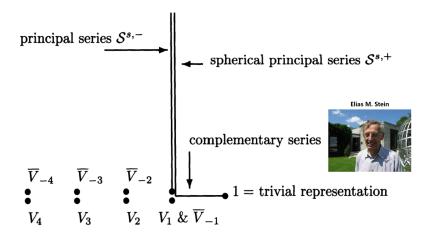
- $\operatorname{Unip}_{\check{\mathcal{O}}}(G) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$
- $\#\mathrm{Unip}_{\check{\mathcal{O}}}(G) = ??$

Examples

```
G = \mathrm{SL}_2(\mathbb{R}).
 \bullet \check{\mathcal{O}} = \mathsf{principal} orbit:
     \operatorname{Unip}_{\check{\mathcal{O}}}(G) = \{ \text{ trivial repn.} \}
 \check{\mathcal{O}} = \mathsf{zero} \mathsf{orbit}:
     \operatorname{Unip}_{\mathcal{O}}(G) =
     { 2 limit of discrete series, a spherical principle series }
In [17]: \mbox{ } print(f"\#Unip\ (3)(SL\ 2(R) = \{countC((3,))\}")
                  print(f"#Unip (1,1,1)(SL 2(R) = {countC((1,1,1))}")
                  #Unip (3)(SL 2(R) = 1
                  \#Unip\ (1,1,1)(SL\ 2(R) = 3
 https://www.kaggle.com/hoxidema/
```

counting-special-unipotent-repn

Unitary dual



Complex associated variety

- $\begin{array}{l} \blacksquare \ \pi \in \operatorname{Unip}_{\check{\mathcal{O}}}(G) \\ \iff \pi \ \text{has inf. char.} \ \lambda_{\check{\mathcal{O}}} \ \text{and} \ \operatorname{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}} \end{array}$
- $Nil(G_{\mathbb{C}}) \ni \mathcal{O}$:= the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$.
- O is a special nilpotent orbit.
- **Question:** For $\mathcal{O} \in \operatorname{Nil}(G_{\mathbb{C}})$, inf. char. λ , $\# \{ \pi \in \operatorname{Irr}(G) : \text{inf. char. } \pi = \lambda \text{ and } \operatorname{AV}_{\mathbb{C}}(G) = \overline{\mathcal{O}} \} = ??$.
- This is question also relevent if one consider non-special unipotent representations (defined by Losev, Mason-Brown, and Matvieievskyi).

Counting irr. repn. with a fixed asso. variety (integral case)

- lacksquare $\operatorname{Coh}_{[\lambda]}(G)$: the coherent continuation repn. based on $\lambda + X^*$.
- $W_{\lambda} := \{ w \in W \mid w\lambda = \lambda \}$

Theorem

If E_8 is not a simple factor of G, then

$$\# \{ \pi \in \operatorname{Irr}(G) \mid \text{inf. char.} = \lambda, \operatorname{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}} \}$$

$$= \sum_{\tau \in \mathcal{D}} \dim \tau^{W_{\lambda}} \cdot [\tau : \operatorname{Coh}_{[\lambda]}(G)]$$

Counting unipotent representations

- Complex reductive groups, $\check{\mathcal{O}}$ integral, (Barbasch-Vogan) $\#\mathrm{Unip}_{\check{\mathcal{O}}}(G) = \#$ Lusztig's canonical quotient of $\check{\mathcal{O}}$. Assume: $\check{\mathcal{O}}$ has good parity
- $\mathrm{U}(p,q)$, (Barbasch-Vogan) # $\mathrm{Unip}_{\check{\mathcal{O}}}(G) = \#$ real forms of its BV-dual \mathcal{O} .
- \blacksquare $\mathrm{SU}(p,q),$ restriction from that of $\mathrm{U}(p,q)$ or a double cover of $\mathrm{U}(p,q)$
- Real classical groups $\# \mathrm{Unip}_{\check{\mathcal{O}}}(G) = \mathsf{painted}$ bi-partitions (BMSZ). Construction: theta correspondence
- Spin group very few genuine special unipotent representations.
- Exceptional group
 Atlas of Lie group

Dual pairs over finite fields

- lacksquare $F:=\mathbb{F}_q$ a finite field, s.t. |F|=q.
- (V, V'): a dual pair of Hermitian spaces

	$G = \mathrm{U}(V)$	$G' = \mathrm{U}(V')$	
$\overline{(A)}$	unitary gp.	unitary gp.	
$\overline{(B)}$	odd orthogonal gp.	"metaplectic" gp.	
(D)	even orthogonal gp.	symplectic gp.	$p \neq 2^r$
(C)	symplectic gp.	even orthogonal gp.	
(\widetilde{C})	"metaplectic" gp.	odd orthogonal gp.	

■ We focus on case (C) today.

Theta lifting/Howe correspondence

- lacksquare V symplectic space, V' quadratic space.
- (modified) Weil representation

$$\omega_{V,V'} := \left(\mathbf{1} \boxtimes (\xi \circ \det_{V'})^{\frac{1}{2} \dim_F V}\right) \otimes \omega_{\psi,V \otimes_F V'}$$

 $(\omega_{\psi,V\otimes_F V'})$: Weil representation of $\mathrm{U}(V\otimes_F V')$ a la Gérardin, ξ the quadratic character of F^\times)

- Orthogonal gp. acts geometrically on the Schrödinger model.
- Compatible with the *conservation relation*.

Theta lift functor

Theta lift functor

$$\Theta_{V,V'} \colon \operatorname{Rep}(G) \longrightarrow \operatorname{Rep}(G')$$

$$\sigma \mapsto (\omega_{V,V'} \otimes \sigma^{\vee})_{G}$$

Srinivasan

Adams Moy

Aubert Michel Rouquier

Pan

Liu Wang Gurevich

Srinivasan, Weil representations of finite classical groups (1979)

Case (i), $m \le n$.

(4.3)
$$\omega_{\text{unif}} = \sum_{k=0}^{m-1} \sum_{(T) \in S_{p_{2k}}} \frac{1}{|W(T)|} \sum_{\theta \in \hat{T}} \varepsilon \, \varepsilon' \, R_{T \times S_{p_{2n-2k}}}^{S_{p_{2n}}}(\theta \times 1) \times R_{T \times S_{0}_{2m-2k}}^{S_{0}_{2m}}(\theta \times 1)$$

$$+ \sum_{\substack{(T) \in S_{p_{2m}} \\ T \in S_{0}_{2m}}} \varepsilon (-1)^{n+m} \cdot \frac{2}{|W(T)|} \sum_{\theta \in \hat{T}} R_{T}^{S_{p_{2n}}}(\theta) \times R_{T}^{S_{0}_{2m}}(\theta).$$

Conservation relation

 $m{\mathcal{V}}',\widetilde{\mathcal{V}}'$: Witt towers of even dim. quadratic spaces $\mathrm{disc}(\mathcal{V}')
eq \mathrm{disc}(\widetilde{\mathcal{V}}')$

■ First occurrence index

$$n_{V,V'}(\sigma) := \min \left\{ \dim V' \mid \Theta_{V,V'}(\sigma) \neq 0, V' \in \mathcal{V}' \right\}$$

Theorem (Conservation relation I)

If trivial repn. of $\mathrm{GL}_1(\mathbb{F}_q)$ is not in the cuspidal support of σ , then

$$n_{V,\mathcal{V}'}(\sigma) + n_{V,\widetilde{\mathcal{V}}'}(\sigma) = 2\dim V + \delta, \quad \text{with } \delta = 2$$

- Sun-Zhu (2014): $\delta = \max \{ \text{dim. of an anisotropic quadratic space} \}$
- Pan (2002):reduction to *p*-adic unip. repn. (cuspidal)
- Pan (2022):reduction to the unipotent case. (general)

Parabolic inductions relevant to θ -correspondence

Definition: σ is *theta-cuspidal* \Leftrightarrow 1 of $GL_1(\mathbb{F}_q) \notin cusp$. supp. of σ .

- $lackbox{ }V_l=V\oplus \mathbb{H}^l$ (\mathbb{H} the hyperbolic space)
- lacksquare A parabolic subgp. P_l of $G_l := \mathrm{U}(V_l)$ with Levi

$$L_l := \underbrace{\operatorname{GL}_1(F) \times \cdots \times \operatorname{GL}_1(F)}_{l\text{-terms}} \times \operatorname{U}(V)$$

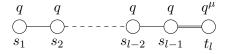
Harish-Chandra series:

$$\mathcal{E}(l,\sigma) = \Big\{ \text{irr. constituents in } \operatorname{Ind}_{P_l}^{G_l} \ \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{l} \otimes \sigma \Big\}.$$

$$\sigma_l := egin{pmatrix} egin{pmatri$$

Hekce algebra $\mathcal{H}_{l,\sigma}:=\operatorname{End}_{G_l}(\operatorname{Ind}_{P_l}^{G_l}\sigma_l^ee)$

- Howlett-Lehrer + Lusztig: $\mathcal{H}_{l,\sigma}\cong$ the Hecke algebra of W_l with $\mathit{unequal}$ parameters
- $Norm_{\mathrm{U}(V_l)}(L_l)/L_l \cong \mathsf{W}_l := \mathsf{S}_l \ltimes \{\pm 1\}^l.$



• $\mathcal{H}_{l,\sigma} = \langle T_s | s = s_1, \cdots, s_{l-1}, t_l \rangle$ with Quadratic Relations

$$\begin{split} &(T_{s_i}+1)(T_{s_i}-q)=0 \quad \forall 1\leq i\leq l-1\\ &(T_{t_l}-C_1)(T_{t_l}-C_2)=0 \quad \text{with} \quad q^\mu=-\frac{C_1}{C_2} \end{split}$$

The operator T_{t_l}

$$(T_{t_l} - C_1)(T_{t_l} - C_2) = 0$$
 with $q^{\mu} = -\frac{C_1}{C_2}$

- lacksquare Let V' and \widetilde{V}' be the first occurnce spaces in \mathcal{V}' and $\widetilde{\mathcal{V}}'$.
- lacksquare Compute the T_l -action on $\mathrm{Hom}_{G_l}(\mathrm{Ind}_{P_l}^{G_l}\sigma_l,\omega_{V_l,V'})$

$$\begin{split} C_1 &= \gamma_{V'} q^{\dim V + \frac{1}{2}\delta - \frac{1}{2}\dim V'} \\ C_2 &= \gamma_{\widetilde{V}'} q^{\dim V + \frac{1}{2}\delta - \frac{1}{2}\dim \widetilde{V}'} \\ C_1 C_2 &= -T_{t_t}^2(1) = -q^{\dim V + \frac{1}{2}\delta} \end{split}$$

■ Compare the *powers* \Rightarrow Conservation relation.

generic Hekce algebra

■ $\mathsf{H}_{l,\mu} = \langle T_s | s = s_1, \cdots, s_{l-1}, t_l \rangle$ free over $\mathbb{Z}[\nu^{\frac{1}{2}}, \nu^{-\frac{1}{2}}]$. with *Quadratic Relations*

$$(T_{s_i} + 1)(T_{s_i} - \nu) = 0 \quad \forall 1 \le i \le l - 1$$

 $(T_{t_l} + 1)(T_{t_l} - \nu^{\mu}) = 0$

Hecke bimodule and its deformation

Assume: theta-cuspidal $\sigma \stackrel{\Theta}{\longleftrightarrow}$ theta-cuspidal σ' ,

■ Consider the $\mathcal{H}_{l,\sigma} \times \mathcal{H}_{l',\sigma'}$ -module:

$$\mathcal{M} := \operatorname{Hom}_{G_l \times G'_{l'}}(\operatorname{Ind}_{P_l}^{G_l} \sigma_l \otimes \operatorname{Ind}_{P'_{l'}}^{G'_{l'}} \sigma'_{l'}, \omega_{V_l, V'_{l'}})$$

Tits deformation

Main Theorem (assume $\sigma \stackrel{\Theta}{\longleftrightarrow} \sigma'$ and theta-cuspidal)

Theorem (M.-Qiu-Zou)

There is an $H_{l,\mu} \times H_{l',\mu'}$ -module M (constructed explicitly) such that

$$M \otimes_R \mathbb{C}_q \cong \mathcal{M} := \operatorname{Hom}_{G_l \times G'_{l'}}(\operatorname{Ind}_{P_l}^{G_l} \sigma_l \otimes \operatorname{Ind}_{P'_{l'}}^{G'_{l'}} \sigma'_{l'}, \omega_{V_l, V'_{l'}})$$

$$\blacksquare \mathsf{M} \otimes_R \mathbb{C}_1 \cong \sum_{k=0}^{\min\{l,l'\}} \operatorname{Ind}_{\mathsf{W}_{l-k} \times \triangle \mathsf{W}_k \times \mathsf{W}_{l'-k}}^{\mathsf{W}_l \times \mathsf{W}_{l'}} \mathbf{1}_{l-k} \boxtimes \varepsilon_k \boxtimes \mathbf{1}_{l'-k}.$$

- Theorem + Adams-Moy \Rightarrow Aubert-Michel-Rouquier + Pan
- Theorem \Rightarrow General form of the conservation relation.
- When $\mu = 1$, M has a geometric realization.

Determine the correspondence between cuspidal repns.

- Lusztig's map $\mathcal{E}(G,s) \longrightarrow \mathcal{E}(G_s^*,1)$.
- Unipotent cuspidal repn are rare.

Assume: $\mathcal{E}(G,s) \ni \sigma \leftrightarrow \sigma' \in \mathcal{E}(G,s')$ are cuspidal.

- \bullet τ_t is cuspdial GL_k repn $(k \neq 1 \text{ or } t \neq 1)$.
- Consider $\mathcal{H}_{\tau,\sigma} := \operatorname{End}(\operatorname{Ind}_{(\operatorname{GL}_k \times G)U}^{G_k} \tau \otimes \sigma).$

Lemma

$$\mathcal{H}_{\tau,\sigma} \cong \mathcal{H}_{\tau,\sigma'}$$
.

- The lemma+conservation relation
 - → description of theta corr. between cuspidal repns
 - → complete description of theta over finite field.
- Similar lemma holds in *p*-adic case.

Theta and Hecke algebra $/ \mathbb{R}$?

Thank you for listening!