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Preliminaries

Notations

G: a semisimple algebraic group over C with trivial center.

B = {Borel subgroups of G}.
We say a pair B,B′ ∈ B is generic if B ∩ B′ := T is abelian. e.g.,
G = PGLn,
B={upper triangular matrices},
B′={lower triangular matrices}.
Let I = {1, . . . , r} parametrize the simple coroots α∨1 , . . . , α

∨
r .

The datum p = (B,B′, xi , yi ; i ∈ I ) is called a pinning over a generic pair (B,B′) if it
assigns to every i ∈ I a homomorphism γi : SL2 → G such that

γi

(
1 a
0 1

)
= xi (a) ∈ B,

γi

(
1 0
a 1

)
= yi (a) ∈ B′,

γi

(
a 0
0 a−1

)
= α∨i (a) ∈ T.
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Preliminaries

Examples

G = PGL2, B ∼= P1={1-dimensional subspaces in C2 }

a pinning over the lines B,B′ ∈ B is a linear isomorphism from B to B′

B

B′

p

•

•
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Preliminaries

Examples

G = PGLn, B ∼= {V1 ⊂ V2 ⊂ . . . ⊂ Vn = Cn | dimVi = i}

A pair B,B′ ∈ B is generic ⇐⇒ there exists a decomposition Cn = l1 ⊕ l2 ⊕ . . .⊕ ln,
and

B = (l1 ⊂ l1 ⊕ l2 ⊂ . . . ⊂ l1 ⊕ · · · ⊕ ln)

B′ = (ln ⊂ ln ⊕ ln−1 ⊂ . . . ⊂ ln ⊕ · · · ⊕ l1) .

A pinning over (B,B′) is equivalent to a choice of a one dimensional space l ⊂ Cn

such that l is not contained in any hyperplane spanned by a subset of {l1, . . . , ln},
i.e.,

l 6⊂ l1 ⊕ . . .⊕ l̂i ⊕ . . .⊕ ln, ∀i .

Hence, the pinnings over (B,B′) are parametrized by the the torus (C×)n−1 ⊂ Pn−1.
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Preliminaries

A toy example

Definition

Let Dn be a regular n-gon. The moduli space PG,Dn parametrizes G-orbits of the tuples
(B1, . . . ,Bn; p1, . . . , pn), where

B1, . . . ,Bn are Borel subgroups of G such that the pairs (Bi ,Bi+1), i ∈ Z/nZ, are
generic

pi is a pinning over (Bi ,Bi+1).

Elements of PG,D5 are pictured as follows:

•

•

• •

•

B1

B2

B3 B4

B5

p1

p2

p3

p4

p5

Remark. The dimension of PG,Dn is

m = n dim B− dim G.

The cyclic group Z/nZ acts on PG,Dn by rotation.
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Preliminaries

A toy example

Theorem (Goncharov-S, 2019)

The space PG,Dn is a rational smooth affine variety. It admits a natural cluster Poisson
structure invariant under Z/nZ-action, i.e.,

1 PG,Dn is a Poisson variety,

2 PG,Dn admits an exceptional collection C of local charts α = {Xα,1, . . . ,Xα,m},
The transition maps between these charts are given by sequences of cluster
mutations.

3 the coordinate ring

O(PG,Dn ) =
⋂
α∈C

C[X±α,1, . . . ,X
±
α,m]

The group Z/nZ acts by Poisson automorphisms that permute the cluster charts.
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Cluster Poisson algebras

Cluster theory (background)

Cluster algebras are a class of commutative algebras introduced by Fomin and
Zelevinsky in 2000. They first appeared in the context of representation theory, but
have since appeared in many other contexts, from Discrete dynamical systems to
Poisson geometry, Teichmüller theory, and Donaldson-Thomas theory.

Cluster varieties are log Calabi-Yau varieties whose coordinate rings are cluster
algebras. Many natural geometric objects are cluster varieties, e.g., Grassmannians,
Schubert varieties, double Bruhat cells, double Bott-Samuelson cells etc.

Every cluster Poisson variety admits a Poisson bracket which can be quantized.
For example, there is a C[q±1]-linear algebra Oq(PG,Dn ) whose semiclassical limit at
q 7→ 1 recovers O(PG,Dn ) and its Poisson bracket.
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Cluster Poisson algebras

Cluster theory (background)

Most cluster algebras admit natural bases (called the theta bases) with
non-negative integer structure coefficients [Gross-Hacking-Keel-Kontsevich].

Example. The theta basis of the coordinate ring O(PG,Dn ) gives rise to a natural
basis of the tensor product invariants

(Vλ1 ⊗ · · · ⊗ Vλn )G (1)

of finite dimensional irreducible representations of G .

Remarks.
1 The Θ bases are constructed by counting broken lines in scattering diagrams. The

scatter diagrams are introduced by Kontsevich-Soibelman and Gross-Siebert to
describe the wall-crossing structures.

2 It is an interesting direction for future research to compare the theta basis of (1) with
other natural bases of representations (e.g. Lusztig’s canonical bases for quantum
groups, Mirkovic-Vilonen bases arising from geometric Satake correspondence). In
particular, evidence shows that the Θ bases may coincide(?) with the MV bases.
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Cluster Poisson algebras

Basics on cluster Poisson algebras

Definition (Seeds)

A seed i consists of the data {(X1, . . . ,Xm),W }, where

X1, . . . ,Xm are algebraically independent variables;

W =
∑

aijXi
∂
∂Xi
∧ Xj

∂
∂Xj

is a bi-vector encoded by an integer m ×m

skew-symmetric matrix (aij).

Denote by Li := C[X±1 , . . . ,X
±
n ] the ring of Laurent polynomials in X1, . . . ,Xn.

Definition (Mutations)

Fix a seed i as above. For each k ∈ {1, . . . ,m}, we get a mutated seed

µk(i) :=
{

(X ′1, . . . ,X
′
m), W ′

}
where W ′ = W and

X ′i =

{
X−1

k if i = k

Xi

(
1 + X

−sgn(aik )
k

)−aik
if i 6= k

(2)

The process of obtaining the new seed µk(i) is called a seed mutation in the direction k.
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Cluster Poisson algebras

Basics on cluster Poisson algebras

Remarks.

1 The bi-vector W ′ can be presented in terms of the new variables X ′i as follows

W ′ =
∑

a′ijX
′
i
∂

∂X ′i
∧ X ′j

∂

∂X ′j
, where a′ij ∈ Z.

Hence one can further mutate µk(i) using (a′ij).

2 We say a seed i′ is equivalent to i and denote by i′ ∼ i if it can be obtained from i by
a sequence of seed mutations.

Definition (Cluster Poisson algebra)

The cluster Poisson algebra associated with a seed i is the intersection of Laurent
polynomial rings for all seeds i′ that are mutation equivalent to i:

O(i) :=
⋂
i′∼i

Li′ .
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Cluster Poisson algebras

Basics on cluster Poisson algebras

Note that the bi-vector W is global. Hence it induces a Poisson algebra structure on
O(i), that is, the algebra O(i) carries a bilinear map { , } : O(i)×O(i)→ O(i), which is
skew-symmetric and satisfies the Jacobi identity and the Leibniz identity.

Definition

A cluster Poisson transformation of O(i) is a Poisson automorphism of O(i) that can be
obtained by a sequence of mutations followed by a seed isomorphism.
The set Gi of cluster Poisson transformations under composition forms a group, called the
cluster modular group associated to i.

Remark. The Poisson algebra O(i) admits a quantization-deformation Oq(i) defined in a
similar way. The group Gi naturally acts on Oq(i) as well.
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Cluster Poisson algebras

A toy example

Theorem (Goncharov-S, 2019)

The space PG,Dn is a rational smooth affine variety. It admits a natural cluster Poisson
structure invariant under Z/nZ-action, i.e.,

1 PG,Dn is a Poisson variety,

2 PG,Dn admits an exceptional collection C of local charts α = {Xα,1, . . . ,Xα,m},
The transition maps between these charts are cluster Poisson transformations.

3 the coordinate ring

O(PG,Dn ) =
⋂
α∈C

C[X±α,1, . . . ,X
±
α,m]

The group Z/nZ acts by Poisson automorphisms that permute the cluster charts.
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Cluster Poisson algebras

A toy example

In terms of the aforementioned definitions, this Theorem asserts that

Theorem

The coordinate ring O(PG,Dn ) is a cluster Poisson algebra. The cyclic group Z/nZ acts
on O(PG,Dn ) by cluster Poisson transformations.
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Moduli of G-local systems

Moduli space of G-local systems

Let S be an oriented topological surface with punctures and special boundary points.

 

A G-local system L is a principal G-bundle over S with flat connections. Let
LB := L ×G B be its associated B-bundle.

Definition (Moduli space of decorated G-local systems)

The moduli space PG,S parametrizes G-orbits of the data (L, {Bp}, {Bi}, {pe}), where

L is a G-local system over S ;

for every puncture p, the data Bp is a flat section of LB over the circle around p;

for every special boundary point i , the data Bi is a section of LB over i ;

for every boundary interval e connecting special points i , j , the associated pair
(Bi ,Bj) is generic, and pe is a pinning over (Bi ,Bj).
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Moduli of G-local systems

Examples

Let n ≥ 1 and 2g + n ≥ 3. Let S be a genus g surface with n-many punctures. Its
fundamental group π1(S) is a free group.
The moduli space of G-local systems over S is isomorphic to the character variety

LG,S = Hom (π1(S),G)
/

G.

By forgetting the flat section Bp associated to each puncture p, we get a projection

π : PG,S −→ LG,S .

Generically, this is a |W |n-to-1 map, where W is the Weyl group of G.
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Moduli of G-local systems

Examples

Let S be once-punctured disk with 2 special boundary points. Elements of PG,S are
illustrated by the following figure. – Note that B is a Borel subgroup containing the
monodromy g .
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Moduli of G-local systems
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Moduli of G-local systems

Natural actions on PG,S .

The following four groups naturally acts on PG,S :

the mapping class group of S ,

the group of outer automorphisms of G,

the product of Weyl groups over punctures of S ,

the product of braid groups BG over boundary circles of S .
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Moduli of G-local systems

Example: braid group actions.

Definition

Let C = (cij) be the Cartan matrix associated to G. For any i 6= j , we set mij = 2, 3, 4, or
6 according to whether cijcji is 0, 1, 2, or 3. The braid group BG is generated by σi , and
satisfies the relations

σiσjσi . . . = σjσiσj . . . ,

with both sides have mij factors.
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Moduli of G-local systems

Example: braid group actions.

◦ ••
B

B1 B2

pe1

pe2

g

Recall that there is a Tits-distance map d : B × B →W .
Let B′1 be the unique Borel subgroup such that

d(B1,B
′
1) = si , d(B′1,B2) = siw0.

Let B′2 be the unique Borel subgroup such that

d(B2,B
′
2) = si∗ , d(B′2,B1) = si∗w0.

Here si∗ = w0siw
−1
0 .
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Moduli of G-local systems
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Moduli of G-local systems
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Moduli of G-local systems

Example: braid group actions.
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Moduli of G-local systems

Example: Weyl group action.

◦ ••
Bp

B1 B2

pe1

pe2

g

For the monodromy g surrounding a puncture p, a choice of Bp is equivalent to a choice
of a Borel subgroup Bp invariant under g -conjugation.
If g is generic, then the set of Borel subgroups containing g is a W -torsor.
For example, if g ∈ PGLn is generic, then g acts on Cn with distinct eigenlines l1, . . . , ln.
Every permutation σ of {1, . . . , n} corresponds to a flag invariant under the action of g :

Bσ = lσ(1) ⊂ lσ(1) ⊕ lσ(2) ⊂ . . . ⊂ lσ(1) ⊕ · · · ⊕ lσ(n).

In general, there is a birational W -action by alternating Bp.
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Moduli of G-local systems

Example: Weyl group action.
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Moduli of G-local systems

Main result

Theorem (Goncharov-S)

The coordinate ring of PG,S is a cluster Poisson algebra. The aforementioned four groups
act on O(PG,S) as cluster Poisson transformations.

1 Let ∗ ∈ Out(G) be the Cartan involution. Let Tw0 be the lift of the longest w0 ∈W
to the braid group B. We consider the following automorphism of PG,S :

C = ∗ ◦
∏

boundary components

T (w0) ◦
∏

punctures

w0

If S is not a once punctured surface, then C is the Donaldson-Thomas
transformation of PG,S .
– For G = PGLn, this is proved in [Goncharov-S, 2016]; for general G, this is a work
in progress.

2 As a consequence, we prove that the coordinate ring O(PG,S) admits a natural basis
which is invariant under the above group actions

3 The above four group actions can be lifted to actions on the quantized C[q, q−1]-
algebra Oq(PG,S). In particular, the algebra Oq(PG,S) is expected to admit a natural
C[q, q−1]-linear basis which is invariant under the above group actions.
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Quantum groups

Quantization

For every special boundary point s of S , we introduce two collections of regular
functions:

1 the potential functions ([Goncharov-S, 2015]):

Ws,1, . . .Ws,r

2 the h-distance functions measuring nearby pinnings:

Ks,1, . . .Ks,r

All of them can be naturally lifted to Oq(PG,S) respecting the underlying cluster
structure of PG,S :

Ws,i 7−→Ws,i Ks,i 7−→ Ks,i .

Recall the Weyl group actions associated to punctures. As a consequence of our
nature lift, we have

Ws,i , Ks,i ∈ Oq(PG,S)W
n
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Quantum groups

Quantum groups (an application)

Let Uq(g) be the quantum group associated to g. It is a Hopf algebra generated by{
Ei , Fi , K±i

∣∣ i = 1, . . . , r
}

satisfying a set of relations, e.g. the quantum Serre relation for cij = cji = −1:

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0

Let Uq(b) ⊂ Uq(g) be the subalgebra generated by{
Ei , K±i

∣∣ i ∈ I
}

Theorem (Goncharov-S, 2019)

For every special boundary point s, we obtain a natural embedding

es : Uq(b) −→ Oq(PG,S)W
n

Ei 7→Ws,i , Ki 7→ Ks,i .
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Quantum groups

Quantum groups (an application)

Suppose S has a boundary component which contains exactly 2 special points s1, s2.

Lemma

The product Ks1,iKs2,i∗ is a central element of Oq(PG,S)W
n

.

Let I be the ideal generated by Ks1,iKs2,i∗ − 1 for i = 1, . . . , r

Theorem (Goncharov-S, 2019)

There is a natural embedding

Uq(g) −→ Oq(PG,S)W
n
/
I. (3)

Conjecture

When S is a punctured disk with 2 special points on its boundary, the map (3) is an
isomorphism.
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Quantum groups

Remarks

Assume that (3) is an isomorphism. Then the quantized theta basis of Oq(PG,S)
should descend to a natural basis of Uq(g).

Example. The quantum group Uq(sl2) is a C[q±1]-algebra generated by E,F,K±1

and satisfies the relations

KE = q2EK, KF = q−2FK, EF− FE = (q − q−1)(K−1 −K).

By the last relation, we get a central element

C := EF− qK−1 − q−1K = FE− q−1K−1 − qK.

Let T0, T1, . . . be the sequence of Chebyshev polynomials given T0 = 1 and
Tn(t + t−1) = tn + t−n for n > 0. The set

Θ =
{
qlmElKmTn(C)

∣∣∣ l ≥ 0, n ≥ 0,m ∈ Z
}⊔{

qmlKlFmTn(C)
∣∣∣ l ∈ Z,m > 0, n ≥ 0

}
form a linear basis of Uq(sl2) with structure coefficients in N[q, q−1].
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Quantum groups

Remarks

Lusztig studied the braid group BG action on Uq(g). We prove that under the above
embedding (3), Lusztig’s braid group action coincides with our braid group action on
PG,S .

The braid group action, and the Weyl group action on PG,S are the first step of a
deeper theory connecting cluster theory and representation theory. Eventually, we
aim to study the principal series representations of Oq(PG,S) for arbitrary surfaces.

We will develop a TQFT theory regarding the aforementioned principal series
representations, which should lead to new quantum invariants of 3 dimensional
manifolds.
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Quantum groups

Remarks

Amalgamation of surfaces gives rise to maps between moduli spaces:

glue : PG,S1 × PG,S2 −→ PG,S1∗S2

The map glue is Poisson and can be quantized.
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Quantum groups

Thank you!
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