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Periods of automorphic representations (1/2)'

e G : reductive algebraic group over a number field F
e 7 : automorphic representation of G(Ap)
e H : subgroup of GG

We say that 7 is H-distinguished if

Jper st Py(d) = / d(h)dh # 0.

H(F)\H(AF)

Haar measure -

This integral is called a period with respect to H.
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Periods of automorphic representations (2/2)'

Periods are closely related to analytic properties of
automorphic L-functions of .

In particular, there are many examples like
e 3 non-vanishing periods = L(1/2,7) # 0

e I non-vanishing periods << L(s,7) has a pole
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Toric periods (1/2)'

e [/F : quadratic extension of number fields
e D : quaternion algebra over ' s.t. F— D

e  : cuspidal automorphic representation of D

We say that 7 is £ *-distinguished if

Jpen st Pg(p) = / ¢(h)dh 0.

EXAF\AR

This integral is called a toric period with respect to E.
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Toric periods (2/2)'

o xg:Ap/F* — {£1} : the unique quadratic character
s.t. Ker(xg) = Ng/r(Af).

Then,
7w : E*-distinguished

L(1/2 .
& dimm # 1 = (1/2,7®xe) #0

This is a reuslt of Waldspurger.
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Main result

e S : finite set of places of F

e 1 : irreducible cuspidal automorphic representation
of D s.t. dim7 #1

Theorem
Suppose we have L(1/2,7) # 0.

Then 3 &, : quadratic semi-simple algebra over F, for v € S
1ES D
st. #< E/F : quad. ext. 2B, =&, VYveS
(3) m is E*-distinguished

I
g
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The main result is motivated by the remarkable results of
Waldspurger in 1980’s about:

e Shimura correspondence in the framework of autormorphic

representations of Mp, ;
e non-vanishing of central L-values ;

e non-vanishing of toric periods.
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Waldspurger’s result (1/3)'

For £ € F*,

o E=E=F[X]/(X*-¢)
: the associated quadratic algebra over F.

o xe¢e=Xxg:AL/F*— {£1} : the unique quadratic character
s.t. Ker(Xg) = NE/F(AE)

In particular, x. = 1iff B, ~ F x F.
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Waldspurger’s result (2/3)'

Suppose that D = Mat,(F).

e 1 : irreducible cuspidal automorphic representation
e ),cR,foreachves§

Theorem (Waldspurger ‘91)

If (1/2,7) =1, then
o [£—-1|,<d, YwES;
o L(1/2,m® x¢) # 0.

J& e F* st
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Waldspurger’s result (3/3)'

o This theorem plays an important role in the description
of the discrete spectrum of L2_ (Mp,(F)\Mp,(Ar)).

@ The original proof is based on the representation theory
of GL,, which was studied by Flicker using the trace
formula.

o In 1995, Friedberg and Hoffstein obtained more general
results by using the technique of analytic number theory.
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result of Friedberg-Hoffstein (1/2)'

e Fj : quadratic extension of F

e 1 : irreducible cuspidal automorphic representation
of GLQ(AF)

If (1/2,7 ® xg,) = 1, then

[ ] Ev = E()’v YveS

Joo E/F : quad. extension s.t.
o L(1/2,m® xE) #0.
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result of Friedberg-Hoffstein (2/2)'

For the proof, they used a multi-variable Dirichlet series
(roughly) of the form :

(s,2,m) Z Z (2, m ® XE X (some factor).

e F : quadratic extension of F'
e a : certain ideal class of F.

The above theorem is obtained by analyzing poles at s = 1.
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@ X : aset
o c(r)eC,zeX

Q. How can we prove #{re X |c(r)#0} =007

A technique of analytic number theory —

Study the poles of certain Dirichlet series

D(X,s) = Z Z % X (some factor).

zeX a

typical examples

@ Dirichlet’s theorem on arithmetic progressions
@ Chebotarev’s density theorem

The proof of our theorem uses this technique.
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Friedberg-Hoffstein vs main theorem'

e By using another result of Waldspurger,
we can restate Friedberg-Hoffstein as
an existence theorem of infinitely many non-vanishing

toric periods.

e There is NO obvious implication between

Friedberg-Hoffstein and our result in either direction.

e There is an explicit local condition () on 7 and S

s.t. Friedberg-Hoffstein + (x) = main theorem
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The main tool is a Prehomogeneous zeta function,

roughly of the form
L(1
Z(5,6) = Cr(25 — 1) ZZ XE ’PE A Dp(s),

.
* ¢em,

e (r : Dedekind zeta function of F',
where

e Dg(s) : a meromorphic function

with a simple pole at s = 1.

Compare the order of the pole at s = 1 of the both sides
~~ the sum over E is an infinite sum
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Prehomogeneous vector space (1/2)'

o G =D*x D* x GLy,
o V=D&D

e p: GV, F-rational representation, defined by

(z,9)p(g1, 92, 93) = (g7 ' g2, g7 'y 92) g3,

(91,92,93) € G, (x,y) € V.

This action has a Zariski open orbit V},.

s the triple (G,V,p) is called a

prehomogeneous vector space.
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Prehomogeneous vector space (2/2)'

There is a bijection V°(F)/G(F) +» X(D), where

o L.H.S : the set of F'-rational open orbits in V(F)

e RHS : X(D)=< E =
s.t. E— D

quad. semi-simple alg./F’ }

Let w : G — G,, be the character given by
w((g1,92: 93)) = det(g1)? det(ga)” det(gs)*
(91,92 € D*, g3 € GLy)

where det : reduced norm on D or determinant on GL,
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Zeta function I

We define the zeta function by

Z(®, ¢, s)

w(g)® ¢lg1) dlg2) Y @(x- p(g))dy,

/G(F)(Ker P)a\G(A) z€VO(F)

where

° ¢ €, g = (91792793)

e & : Schwartz-Bruhat function on V' (A)
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Basic properties I

Theorem

(1) The zeta function Z(®, ¢, s) has meromorphic continuation to

the whole s-plane.
(2) The zeta function Z(®, ¢, s) satisfies a functional equation
Z((I>>¢7S) = ZV($7¢72 _ 5)7
where Z" is the “dual zeta function” and ® is the Fourier

transform of ®.

(3) The possible poles of Z(®, ¢, s) are at s = 1/2 and s = 3/2 and

both are at most simple poles.
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By the standard unfolding process, we get

2(9,6,5)
LS [ Pelrlo)o) Pelr(ad) (o)l @(a(E)p(o))d

EGX(D) Gw(E)(A)\G(A)

where

® g= <g17g27g3> €eG
e z(F) : a fixed representative of the F-rational open orbit
which corresponds to £ € X (D)

o Gyp) : the stabilizer of z(F)
= Gm,E

20/ 32



Intermediate result I

As a consequence, we see that
Z(®,¢,5) #0
Y
JE € X(D),3g€ G s.t. Pr(n(g)p) #0

U
JE € X(D) s.t. 7: E*-distinguished

Theorem
If L(1/2,m) # 0, then

b, 3¢penm st. Z(P,¢,s) has a simple pole at s = 1/2.
In particular, L(1/2,7) # 0
=3d¢en, IEF € X(D) st. Pr(p)#0
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In order to show non-vanishing of infinitely many periods, we

need an Euler factorization of the contribution of

each F'-rational open orbit:

ZE((I)7 9257 5)

=2 [ Peln(9)8) Pula(g2)9) lw(o)|* ©(w(E)plg))dg.

2 JG,m (ANG(A)

~>  we have Z(®,¢,5)= Y Zp(®,4,5).
EcX(D)

We want a factorization of Z(®, ¢, s).
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Waldspurger formula I

For each place v, we can take ap, € Homx, ;x(m, X 7, C*)
(an EX x EX-invariant hermitian pairing)

so that we have the following Euler factorization:

Theorem (Waldspurger'85)

For a factorizable p = ®,¢,, we have

1 ¢p(2)L(1/2,m)L(1/2,7 ® X&)
4 L(1,7,Ad)L(1, x5) [T ez (6..6.)

v

|PE(¢)|2 =
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Euler factorization I

Applying this formula, we get

(L-values)
ZE((I)7¢7S) — HZEU v7¢va

(constant
for ® = ®,9, and ¢ = ®,0,.

Here, Z5, (®., 6y, s) is the local zeta function
given by

/ ap, (Wv(gl)¢v7 7Tv(92)¢v) ‘wv(g)|5_2 q)v(x(E)p<g)) dg
Go(g)(Fu)\G(F)

X (constant)(local L-values)
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Explicit formula I

Computing the local zeta functions at unramified places, we
see that

Z(q)7 ¢7 3) =
5 (H focal zeta)v> 5 L PPeOF s
Es€X(Ds) \veSs EeX(D,Es) N(az)

x (2(2s — 1) - (constant)(L-values)
where
° X(Ds) = [l,es X(D,) and
Es € X(Dg) is a quad. alg. over Fg =[] .o F..
o X(D,&)={E € X(D)|E, =&, YveS}
@ ap C F : a certain ideal
e D3.(m,s) is a meromorphic function.
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Proof of the main theorem (1/2)'

Assume the sum over X (D, &) is a non-empty finite sum.

Then,
e Z(®,¢,s) is holomorphic at s = 1.
~ L.H.S is holomorphic at s =1
e (2(2s5 — 1) has a simple pole at s = 1.
e D3(m,s) has a simple pole at s = 1.

~ R.H.S has a pole of order 2 at s = 1.

This is a contradiction.
= The sum over X (D, ) is empty or an infinite sum.

= If 3 F e X(D,&) s.t. Pg(¢) # 0, then 3 co such E.
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Proof of the main theorem (2/2)'

Suppose L(1/2,7) # 0.

Then, by the previous theorem, 3 ¢ € 7, 3 Ey, € X(D)
s.t. PE0<¢) £ 0.

Set 55 = HUGS Eom.
From the above argument, 3 00 F € X(D,&s) s.t. Pr(p) # 0.

This completes the proof the main theorem. [
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Future works (1/4)'

In the main theorem, we do not have a control on on the

local components &5 of the quad. alg. at ‘bad places’.

This is the reason why we did not obtain a generalization of

Friedberg-Hoffstein.

What is required for extending the main theorem to cover
Friedberg-Hoffstein is a close study on the

functional equations of local zeta functions

at ‘bad places’.
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Future works (2/4)'

e F. Sato ‘06 --- proved the local F.E. for some specific
representations of GL.(R) in our setting and computed the

‘gamma factors’ explicitly.

e Wen-Wei Li ‘18 --- proved the local F.E. in general case.

~~ We get the following partial result:

Suppose that F' = Q and D, = Mats(R).
Assume that L(1/2,7) # 0.

Then, 3 0o E : real quad. fields s.t. 7 is E*-distinguished.
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Future works (3/4)'

=1 another direction to refine the main theorem

Analysis on the residue of
(usual) prehomogeneous zeta functions

an explicit formula for mean values of

class numbers

Apply this technique to Z(s, ®, ¢), to get a quantitative result
on non-vanishing of toric periods.
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Future works (4/4)'

Suppose that Z

EeX(D,Es)
pole at s = 3/2.

L(1, xp)*|Pe(4)?
N(CIE>S_1

-D%(, s) has a simple

Applying a theorem of Tauberian type,
we might be able to get the following density theorem:

- Density Theorem

the residue of

lim ¢ 2 > L(1,xp)’[Pe(¢)]” = | the above series

t—o0
EeX(D,€s) at s =3/2
N(ag)<t

R.H.S will be written as a Godement-Jacquet zeta integral.

- J
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Thank you for your attention.
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