
Prehomogeneous zeta functions and toric periods

for inner forms of GL(2)

Miyu Suzuki

joint with Satoshi Wakatsuki

Kanazawa Univ.



Periods of automorphic representations (1/2)

• G : reductive algebraic group over a number field F

• π : automorphic representation of G(AF )

• H : subgroup of G

We say that π is H-distinguished if

∃ ϕ ∈ π s.t. PH(ϕ) :=

∫
H(F )\H(AF )

ϕ(h)dh ̸= 0.

Haar measure

↰

This integral is called a period with respect to H.

2 / 32



Periods of automorphic representations (2/2)

Periods are closely related to analytic properties of

automorphic L-functions of π.

In particular, there are many examples like

• ∃ non-vanishing periods ⇒ L(1/2, π) ̸= 0

• ∃ non-vanishing periods ⇔ L(s, π) has a pole
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Toric periods (1/2)

• E/F : quadratic extension of number fields

• D : quaternion algebra over F s.t. E ↪→ D

• π : cuspidal automorphic representation of D×
AF

We say that π is E×-distinguished if

∃ ϕ ∈ π s.t. PE(ϕ) :=

∫
E×A×

F \A×
E

ϕ(h)dh ̸= 0.

This integral is called a toric period with respect to E.
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Toric periods (2/2)

• χE : A×
F/F

× → {±1} : the unique quadratic character

s.t. Ker(χE) = NE/F (A×
E).

Then,

π : E×-distinguished

& dimπ ̸= 1
⇒ L(1/2, π ⊗ χE) ̸= 0.

This is a reuslt of Waldspurger.
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Main result

• S : finite set of places of F

• π : irreducible cuspidal automorphic representation

of D×
A s.t. dim π ̸= 1

Theorem

Suppose we have L(1/2, π) ̸= 0.

Then ∃ Ev : quadratic semi-simple algebra over Fv for v ∈ S

s.t. #

E/F : quad. ext.

∣∣∣∣∣∣∣
(1)E

∃
↪→ D

(2)Ev = Ev ∀ v ∈ S

(3)π is E×-distinguished

 = ∞
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The main result is motivated by the remarkable results of

Waldspurger in 1980’s about:

• Shimura correspondence in the framework of autormorphic

representations of Mp2 ;

• non-vanishing of central L-values ;

• non-vanishing of toric periods.
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Waldspurger’s result (1/3)

For ξ ∈ F×,

• E = Eξ = F [X]/(X2 − ξ)

: the associated quadratic algebra over F .

• χξ = χE : A×
F/F

× → {±1} : the unique quadratic character

s.t. Ker(χξ) = NE/F (A×
E).

In particular, χξ = 1 iff Eξ ≃ F × F .
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Waldspurger’s result (2/3)

Suppose that D = Mat2(F ).

• π : irreducible cuspidal automorphic representation

of D×
AF

= GL2(AF )

• δv ∈ R>0 for each v ∈ S

Theorem (Waldspurger ‘91)

If ε(1/2, π) = 1, then

∃ ξ ∈ F× s.t.

• |ξ − 1|v < δv ∀v ∈ S;

• L(1/2, π ⊗ χξ) ̸= 0.
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Waldspurger’s result (3/3)

This theorem plays an important role in the description

of the discrete spectrum of L2
disc(Mp2(F )\Mp2(AF )).

The original proof is based on the representation theory

of G̃L2, which was studied by Flicker using the trace

formula.

In 1995, Friedberg and Hoffstein obtained more general

results by using the technique of analytic number theory.
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result of Friedberg-Hoffstein (1/2)

• E0 : quadratic extension of F

• π : irreducible cuspidal automorphic representation

of GL2(AF )

Theorem

If ε(1/2, π ⊗ χE0) = 1, then

∃ ∞ E/F : quad. extension s.t.

• Ev = E0,v ∀v ∈ S

• L(1/2, π ⊗ χE) ̸= 0.
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result of Friedberg-Hoffstein (2/2)

For the proof, they used a multi-variable Dirichlet series

(roughly) of the form :

Φ(s, z, π) =
∑
E

∑
a

L(z, π ⊗ χE)

N(a)s
× (some factor).

• E : quadratic extension of F

• a : certain ideal class of F .

The above theorem is obtained by analyzing poles at s = 1.
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X : a set

c(x) ∈ C, x ∈ X

Q. How can we prove #{x ∈ X | c(x) ̸= 0} = ∞ ?

A technique of analytic number theory� �
Study the poles of certain Dirichlet series

Φ(X, s) =
∑
x∈X

∑
a

c(x)

N(a)s
× (some factor).

� �
typical examples

Dirichlet’s theorem on arithmetic progressions

Chebotarev’s density theorem

The proof of our theorem uses this technique.
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Friedberg-Hoffstein vs main theorem

• By using another result of Waldspurger,

we can restate Friedberg-Hoffstein as

an existence theorem of infinitely many non-vanishing

toric periods.

• There is NO obvious implication between

Friedberg-Hoffstein and our result in either direction.

• There is an explicit local condition (∗) on π and S

s.t. Friedberg-Hoffstein+ (∗) ⇒ main theorem
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Main tool

The main tool is a Prehomogeneous zeta function,

roughly of the form

Z(s, ϕ) = ζF (2s− 1)
∑
E

∑
a

L(1, χE)
2|PE(ϕ)|2

N(a)s
×DE(s),

where


• ϕ ∈ π,

• ζF : Dedekind zeta function of F,

• DE(s) : a meromorphic function

with a simple pole at s = 1.

Compare the order of the pole at s = 1 of the both sides

⇝ the sum over E is an infinite sum
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Prehomogeneous vector space (1/2)

G = D× ×D× ×GL2,

V = D ⊕D

ρ : G ↷ V , F -rational representation, defined by

(x, y)ρ(g1, g2, g3) = (g−1
1 xg2, g

−1
1 yg2)g3,

(g1, g2, g3) ∈ G, (x, y) ∈ V.

This action has a Zariski open orbit V0.

⇝ the triple (G, V, ρ) is called a

prehomogeneous vector space.
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Prehomogeneous vector space (2/2)

There is a bijection V 0(F )/G(F ) ↔ X(D), where

L.H.S : the set of F -rational open orbits in V (F )

R.H.S : X(D) =

{
E

∣∣∣∣∣ quad. semi-simple alg./F

s.t. E
∃
↪→ D

}

Let ω : G → Gm be the character given by

ω((g1, g2, g3)) = det(g1)
−2 det(g2)

2 det(g3)
2

(g1, g2 ∈ D×, g3 ∈ GL2)

where det : reduced norm on D or determinant on GL2
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Zeta function

We define the zeta function by

Z(Φ, ϕ, s)

=

∫
G(F )(Ker ρ)A\G(A)

|ω(g)|s ϕ(g1)ϕ(g2)
∑

x∈V 0(F )

Φ(x · ρ(g))dg,

where

ϕ ∈ π, g = (g1, g2, g3)

Φ : Schwartz-Bruhat function on V (A)
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Basic properties

Theorem

(1) The zeta function Z(Φ, ϕ, s) has meromorphic continuation to

the whole s-plane.

(2) The zeta function Z(Φ, ϕ, s) satisfies a functional equation

Z(Φ, ϕ, s) = Z∨(Φ̂, ϕ, 2− s),

where Z∨ is the “dual zeta function” and Φ̂ is the Fourier

transform of Φ.

(3) The possible poles of Z(Φ, ϕ, s) are at s = 1/2 and s = 3/2 and

both are at most simple poles.
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unfolding

By the standard unfolding process, we get

Z(Φ, ϕ, s)

=
1

2

∑
E∈X(D)

∫
Gx(E)(A)\G(A)

PE(π(g1)ϕ)PE(π(g2)ϕ) |ω(g)|sΦ(x(E)ρ(g))dg,

where

g = (g1, g2, g3) ∈ G

x(E) : a fixed representative of the F -rational open orbit

which corresponds to E ∈ X(D)

Gx(E) : the stabilizer of x(E)

≒ Gm,E
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Intermediate result

As a consequence, we see that

Z(Φ, ϕ, s) ̸≡ 0

⇓
∃E ∈ X(D),∃ g ∈ G s.t. PE(π(g)ϕ) ̸= 0

⇓
∃E ∈ X(D) s.t. π : E×-distinguished

Theorem

If L(1/2, π) ̸= 0, then

∃ Φ,∃ ϕ ∈ π s.t. Z(Φ, ϕ, s) has a simple pole at s = 1/2.

In particular, L(1/2, π) ̸= 0

⇒ ∃ ϕ ∈ π, ∃ E ∈ X(D) s.t. PE(ϕ) ̸= 0
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In order to show non-vanishing of infinitely many periods, we

need an Euler factorization of the contribution of

each F -rational open orbit:

ZE(Φ, ϕ, s)

:=
1

2

∫
Gx(E)(A)\G(A)

PE(π(g1)ϕ)PE(π(g2)ϕ) |ω(g)|s Φ(x(E)ρ(g))dg.

⇝ we have Z(Φ, ϕ, s) =
∑

E∈X(D)

ZE(Φ, ϕ, s).

We want a factorization of ZE(Φ, ϕ, s).
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Waldspurger formula

For each place v, we can take αEv ∈ HomE×
v ×E×

v
(πv ⊠ π̄v,C×)

(an E×
v × E×

v -invariant hermitian pairing)

so that we have the following Euler factorization:

Theorem (Waldspurger‘85)

For a factorizable ϕ = ⊗vϕv, we have

|PE(ϕ)|2 =
1

4
· ζF (2)L(1/2, π)L(1/2, π ⊗ χE)

L(1, π,Ad)L(1, χE)

∏
v

αEv(ϕv, ϕv).
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Euler factorization

Applying this formula, we get

ZE(Φ, ϕ, s) =
(L-values)

(constant)
×
∏
v

ZE,v(Φv, ϕv, s)

for Φ = ⊗vΦv and ϕ = ⊗vϕv.

Here, ZEv(Φv, ϕv, s) is the local zeta function
given by∫

Gx(E)(Fv)\G(Fv)

αEv(πv(g1)ϕv, πv(g2)ϕv) |ωv(g)|s−2Φv(x(E)ρ(g)) dg

× (constant)(local L-values)
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Explicit formula

Computing the local zeta functions at unramified places, we

see that

Z(Φ, ϕ, s) =∑
ES∈X(DS)

(∏
v∈S

(local zeta)v

) ∑
E∈X(D,ES)

L(1, χE)
2|PE(ϕ)|2

N(aE)s−1
· DS

E(π, s)

× ζSF (2s− 1) · (constant)(L-values)

where

X(DS) =
∏

v∈S X(Dv) and

ES ∈ X(DS) is a quad. alg. over FS =
∏

v∈S Fv.

X(D, ES) = {E ∈ X(D) | Ev = Ev ∀v ∈ S}
aE ⊂ F : a certain ideal

DS
E(π, s) is a meromorphic function.
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Proof of the main theorem (1/2)

Assume the sum over X(D, ES) is a non-empty finite sum.

Then,

Z(Φ, ϕ, s) is holomorphic at s = 1.

⇝ L.H.S is holomorphic at s = 1

ζSF (2s− 1) has a simple pole at s = 1.

DS
E(π, s) has a simple pole at s = 1.

⇝ R.H.S has a pole of order 2 at s = 1.

This is a contradiction.

⇒ The sum over X(D, ES) is empty or an infinite sum.

⇒ If ∃ E ∈ X(D, ES) s.t. PE(ϕ) ̸= 0, then ∃ ∞ such E.
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Proof of the main theorem (2/2)

Suppose L(1/2, π) ̸= 0.

Then, by the previous theorem, ∃ ϕ ∈ π, ∃ E0 ∈ X(D)

s.t. PE0(ϕ) ̸= 0.

Set ES :=
∏

v∈S E0,v.

From the above argument, ∃ ∞ E ∈ X(D, ES) s.t. PE(ϕ) ̸= 0.

This completes the proof the main theorem.
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Future works (1/4)

In the main theorem, we do not have a control on on the

local components ES of the quad. alg. at ‘bad places’.

This is the reason why we did not obtain a generalization of

Friedberg-Hoffstein.

What is required for extending the main theorem to cover

Friedberg-Hoffstein is a close study on the

functional equations of local zeta functions
at ‘bad places’.
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Future works (2/4)

• F. Sato ‘06 · · · proved the local F.E. for some specific

representations of GL2(R) in our setting and computed the

‘gamma factors’ explicitly.

• Wen-Wei Li ‘18 · · · proved the local F.E. in general case.

⇝ We get the following partial result:

Theorem

Suppose that F = Q and D∞ = Mat2(R).

Assume that L(1/2, π) ̸= 0.

Then, ∃ ∞ E : real quad. fields s.t. π is E×-distinguished.
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Future works (3/4)

∃ another direction to refine the main theorem

�
�

�
�

Analysis on the residue of

(usual) prehomogeneous zeta functions

⇓�
�

�
�

an explicit formula for mean values of

class numbers

Apply this technique to Z(s,Φ, ϕ), to get a
:::::::::::::
quantitative

:::::::
result

on non-vanishing of toric periods.
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Future works (4/4)

Suppose that
∑

E∈X(D,ES)

L(1, χE)
2|PE(ϕ)|2

N(aE)s−1
· DS

E(π, s) has a simple

pole at s = 3/2.

Applying a theorem of Tauberian type,

we might be able to get the following density theorem:

Density Theorem� �
lim
t→∞

t−
1
2

∑
E∈X(D, ES)
N(aE)≤t

L(1, χE)
2|PE(ϕ)|2 =

 the residue of

the above series

at s = 3/2


R.H.S will be written as a Godement-Jacquet zeta integral.� �
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Thank you for your attention.
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