Hida theory for GSpin Shimura varieties

Xiaoyu Zhang

U. Duisburg-Essen

June 10 2020

Xiaoyu Zhang (U. Duisburg-Essen)

Hida theory for GSpin

June 10 2020 1 / 31

Content

Introduction

- 2 GSpin Shimura varieties
- 3 Modular forms and Hecke operators
 - 4 Main results
- 5 Sketch of proof

Fix an odd prime p and compatible field embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C} \simeq \overline{\mathbb{Q}}_p$. We are interested in the following interpolation problem: for a function $f: I \to \overline{\mathbb{Q}} \ (I \subset \mathbb{Z})$, is there an analytic function F(s) with $s \in \mathbb{Z}_p$ (or a finite extension of \mathbb{Z}_p), such that F(k) = f(k) for all $k \in I$? Here is an elementary example: fix a positive integer d prime to p and set $f(s) = d^s \ (s \in \mathbb{N})$.

Recall a theorem of Euler/Fermat, for any r > 0,

$$d^{k+\phi(p^r)} \equiv d^k \pmod{p^r}.$$

Thus we can define a function

$$F\colon \mathbb{Z}_p^{ imes}\simeq \lim_{\stackrel{\leftarrow}{r}} \mathbb{Z}/\phi(p^r) o \mathbb{Z}_p, \quad (s_r)_r\mapsto (d^{s_r})_r.$$

Then F is analytic and moreover F(k) = f(k) for all $k \in \mathbb{N}$. We can try to generalize this construction to modular forms. We try to generalize this construction to modular forms.

Fix an even integer k > 2 and a congruence subgroup $\Gamma = \Gamma_1(N) \subset SL_2(\mathbb{Z})$ (consisting of those $\gamma \equiv 1_2 \pmod{N}$), $A \ge \mathbb{Z}[\frac{1}{N}]$ -algebra.

Then we write $M_k(\Gamma, A)$ for the space of modular forms of weight k, of level Γ with coefficients (of the *q*-expansion) in A and its subspace $S_k(\Gamma, A)$ of cuspidal modular forms.

Typical examples of such modular forms are Eisenstein series

$$E(k,z) = \sum_{m,n\in\mathbb{Z}}^{\prime} \frac{1}{(mz+n)^k}, \quad z = x + iy \text{ with } y > 0.$$

Then we have the *q*-expansion $(q = \exp(2i\pi z))$

$$\widetilde{E}(k,z) = \operatorname{const} \times E(k,z) = \frac{\zeta(1-k)}{2} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$

where $\sigma_{k-1}(n) = \sum_{1 \le d \mid n} d^{k-1}$.

The *p*-stabilization

$$\sigma_{k-1}^{(p)}(n) = \sum_{p \nmid d \mid n} d^{k-1}$$

when viewed as a function of k, admits a p-adic interpolation just as the case of power function $k \mapsto d^k$.

Thus we see that in the *p*-stabilization

$$egin{aligned} & E^{(p)}(k,z) = \widetilde{E}(k,z) - p^{k-1}\widetilde{E}(k,pz) \ & = rac{\zeta(1-k)}{2}(1-p^{k-1}) + \sum_{n=1}^{\infty}\sigma_{k-1}^{(p)}(n)q^n, \end{aligned}$$

the coefficients of non-constant terms have *p*-adic interpolations. A theorem of Serre deduces from this that the constant term $\frac{\zeta(1-k)}{2}(1-p^{k-1})$ also admits a *p*-adic interpolation: we write the weight space

$$W = \{ s \in \mathbb{Z}_{p}^{\times} | s \pmod{p-1} \text{ is even} \},$$

$$\Lambda = \mathcal{O}_{an}(1 + p\mathbb{Z}_{p}, \mathbb{Z}_{p}),$$

$$\widetilde{\Lambda} = \mathcal{O}_{an}(W, \mathbb{Z}_{p}) = \Lambda^{\frac{p-1}{2}}.$$

Theorem (Serre.73')

There is a formal power series $E^{(p)}(s) \in \Lambda[[q]]$ such that for any $2 < k \in W \cap 2\mathbb{N}$, the evaluation at k gives

$$E^{(p)}(k) = E^{(p)}(k, z).$$

Remark

The existence of the p-adic interpolation of the constant term $\frac{\zeta(1-k)}{2}(1-p^{k-1})$ is part of the theorem, related to the p-adic zeta function.

More generally, we introduce the notion of Λ -adic modular forms

Definition

We write

$$M(\Gamma,\Lambda) = \{F \in \Lambda[[q]] | \text{ for a.a. } k \in W \cap 2\mathbb{N}_{>2}, F(k) = M_k(\Gamma,\mathbb{Z}_p)\},\\ S(\Gamma,\Lambda) = \{F \in \Lambda[[q]] | \text{ for a.a. } k \in W \cap 2\mathbb{N}_{>2}, F(k) = S_k(\Gamma,\mathbb{Z}_p)\},$$

$$S(\Gamma, \Lambda) = \{F \in \Lambda[[q]] | \text{ for a.a. } k \in W \cap \mathbb{N}_{>2}, F(k) = S_k(\Gamma, \mathbb{Z}_p)\},$$

Now for each cuspidal modular form $f \in S_k(\Gamma, \mathbb{Z}_p)$, the product $f \cdot E^{(p)} \in S(\Gamma, \Lambda)$, which gives an inclusion

$$\bigcup_k S_k(\Gamma,\mathbb{Z}_p) \hookrightarrow S(\Gamma,\Lambda).$$

We know that the rank of $S_k(\Gamma, \mathbb{Z}_p)$ grows (linearly) with k, thus the space $S(\Gamma, \Lambda)$ may be very large. We want however a subspace of $S(\Gamma, \Lambda)$ which contains $\bigcup_k S_k(\Gamma, \mathbb{Z}_p)$ as a dense subspace and is of finite rank over Λ . The idea of Hida is to consider ordinary modular forms: we have the U_p Hecke operator acting on $M_k(\Gamma, A)$ which is given by

$$(U_p f)(z) = \sum_{n=0}^{\infty} a_{pn} q^n, \quad (f = \sum_{n=0}^{\infty} a_n q^n).$$

We say an eigenform f for U_p is p-ordinary if $U_p f = uf$ for some p-unit u. In general f is p-ordinary if f is a \mathbb{Z}_p -linear combination of such eigenforms. Moreover, if we put

$$e = \lim_{n \to \infty} U_p^{n!} \in \operatorname{End}_{\mathbb{Z}_p}(M_k(\Gamma, \mathbb{Z}_p)).$$

Then for any $f \in M_k(\Gamma, \mathbb{Z}_p)$, e(f) is *p*-ordinary.

Theorem (Hida. 89')

• $eS(\Gamma, \Lambda)$ is a finite free Λ -module;

2 For any $2 < k \in W \cap 2\mathbb{N}$, we have the specialization isomorphism

$$eS(\Gamma, \Lambda) \otimes_{\Lambda, k} \mathbb{Z}_p = eS_k(\Gamma, \mathbb{Z}_p).$$

Remark

Applications such as the weight two case of Mazur-Tate-Teitelbaum conjecture by Greenberg and Stevens, some cases of Artin conjecture by Buzzard, Dickinson, Shephard-Barron and Taylor, the modularity lifting theorem by Wiles and Taylor-Wiles. There are various generalizations of Hida theory to other groups than GL_2/\mathbb{Q} , for example compact unitary group (D.Geraghty), GSp_{2n}/\mathbb{Q} (H.Hida and V.Pilloni), PEL type unitary Shimura varieties (H.Hida, R.Brasca-G.Rosso and E.Ellen-E.Mantovan). In this talk, we want to generalize this to GSpin Shimura varieties.

The machinery of studying ordinary families of *p*-adic modular forms is roughly as follows:

- the rank of the "ordinary" part of the space of weight κ modular forms is bounded independently of κ ,
- e there is a Hasse invariant whose non-vanishing locus is the ordinary locus of the Shimura variety,
- a space of *p*-adic modular forms containing as a dense subset all the classical modular forms. We can take the space of functions on a certain Igusa tower.

We fix a non-degenerate self-dual quadratic space (L, Q) over $\mathbb{Z}_{(p)}$ of rank n + 2 $(n \ge 3)$ such that the quadratic form $Q_{\mathbb{R}}$ is of signature (n, 2). Then the Clifford algebra $C_L = C_{(L,Q)}$ associated to (L, Q) is the quotient tensor algebra

$$C_L = L^{\otimes}/\langle x \otimes x - Q(x) \cdot 1 \rangle$$

which decomposes according to the parity of the degree(length) of the elements in C_L :

$$C_L = C_L^+ \oplus C_L^-,$$

then C_{l}^{+} is a subalgebra of C_{L} of rank 2^{n+1} .

The general spin group $G = \operatorname{GSpin}(L, Q)$ is the reductive algebraic group over $\mathbb{Z}_{(p)}$ whose S-points are given by

$$G(S) = \left\{ x \in (C_L^+ \otimes S)^{\times} | x(L \otimes S) x^{-1} = L \otimes S \right\}.$$

There is a natural embedding of *G* into a general symplectic group. More precisely, there is an anti-automorphism * on *C* sending $x_1 \otimes x_2 \otimes \cdots \otimes x_r$ to $(-1)^r x_r \otimes x_{r-1} \otimes \cdots \otimes x_1$. Fix one element $\delta \in C_L^+$ such that $*(\delta) = -\delta$. Then the map

$$C_L^+ \times C_L^+ \to \mathbb{Z}_{(p)}, \quad (x, y) \mapsto \operatorname{Trd}(x \cdot \delta \cdot *(y))$$

is a non-degenerate symplectic form on C_L^+ . Moreover, the left multiplication of G on C_L^+ preserves this symplectic form, so we get

$$G \to \operatorname{GSp}(C_L^+).$$

We can find a tensor $\mathfrak{t} \in (C_L^+)^{\otimes 2} \otimes ((C_L^+)^{\vee})^{\otimes 2}$ such that $G = \operatorname{Stab}_{\operatorname{GSp}(C_L^+)}(\mathfrak{t})$. In defining a Shimura datum from G, we need a $G(\mathbb{R})$ -conjugacy class X of morphisms $\mathbb{S} := \operatorname{Res}_{\mathbb{C}/\mathbb{R}}(\mathbb{G}_m) \to G_{\mathbb{R}}$. Here we can take

 $X = \{ \text{oriented negative-definite 2-dim subspace in } L_{\mathbb{R}} \}.$

 $X = \{ \text{oriented negative-definite 2-dim subspace in } L_{\mathbb{R}} \}.$ Each $x = \mathbb{R} \langle e_x, f_x \rangle \in X$ gives rise to a Hodge structure on $L_{\mathbb{Q}}$ by (suppose $Q|_x = -1_2$)

$$L_{x}^{p,q} = \begin{cases} \mathbb{C}\langle e_{x} + \sqrt{-1}f_{x} \rangle \subset L_{\mathbb{C}}, & (p,q) = (-1,+1); \\ \mathbb{C}\langle e_{x} - \sqrt{-1}f_{x} \rangle, & (p,q) = (+1,-1); \\ (x_{\mathbb{C}})^{\perp}, & (p,q) = (0,0), \\ 0 & \text{oterwise.} \end{cases}$$

We have then a morphism $h_x \colon \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \to \mathbb{G}_{\mathbb{R}}$ whose \mathbb{R} -points are given by sending $z = r \exp(i\theta) \in \mathbb{C}^{\times}$ to $h_x(z)$ which acts by $\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{pmatrix} \text{ on } x_{\mathbb{C}} \text{ and by 1 on } (x_{\mathbb{C}})^{\perp}.$ Then (G, X) is a Shimura datum. Moreover, all these h_x are defined over \mathbb{Q} , the reflex field of (G, X).

Remark

The assumption that (L, Q) is self-dual over $\mathbb{Z}_{(p)}$ shows that G is auasi-split at p and moreover the adjoint group is $G^{ad} = SO(L, Q)$. Xiaoyu Zhang (U. Duisburg-Essen) Hida theory for GSpin June 10 2020 12/31 Similarly, for $\operatorname{GSp}(C_L^+)$, we can construct a $\operatorname{GSp}(C_L^+)$ -conjugacy class $X_{C_L^+}$ of morphisms $\mathbb{S} \to \operatorname{GSp}(C_L^+)_{\mathbb{R}}$ and we have moreover an embedding $X \hookrightarrow X_{C_L^+}$ via the embedding $G \to \operatorname{GSp}(C_L^+)$. Thus (G, X) is a Shimura datum of Hodge type. Now we fix a compact open subgroup $K = K_p K^p \subset G(\mathbb{A}_f)$ with $K_p = G(\mathbb{Z}_p)$ hyperspecial and K^p sufficiently small. Then the Shimura variety

$$Sh_{\mathcal{K}}(G,X) := G(\mathbb{Q}) \backslash (X \times G(\mathbb{A}_f)/\mathcal{K})$$

has a smooth integral model over \mathbb{Z}_p , which we denote by *Sh*. Over the integral model *Sh*, there is an abelian scheme \mathcal{A} (the pull-back of the universal abelian scheme \mathcal{A}' over the Siegel Shimura variety $Sh_{C_L^+} = Sh(GSp(C_L^+))$ to *Sh*). Then we write $\omega = e^*(\det\Omega_{\mathcal{A}/Sh})$, an ample line bundle (added after the talk: over the minimal compactification), where $e \colon Sh \to \mathcal{A}$ is the unit section of $\mathcal{A} \to Sh$. We put

$$Sh_m = Sh \otimes_{\mathbb{Z}_p} \mathbb{Z}/p^m, \quad Sh_\infty = \lim_{\overrightarrow{m}} Sh_m$$

(the completion of Sh along Sh_1)

Theorem (Koskivirta-Wedhorn,15')

There is a positive integer $N_G > 1$ such that

$$\dim H^0(Sh_1,\omega^{\otimes N_G})=1.$$

(Added after the talk: the statement of the above theorem is not correct due to a misunderstanding of a result of Koskivirta-Wedhorn. The correct statement can be found in their article (Generalized Hasse invariant for Shimura varieties of Hodge type). More precisely, there is a line bundle ω_G^{\flat} (see after (4.11) of *loc.cit*) on $G - \operatorname{Zip}^{\chi}$, a certain stack associated to G(see (4.5) of *loc.cit*). The pull-back $\zeta_G^*(\omega_G^{\flat})$ to *Sh* is the Hodge line bundle ω . Then Theorem 4.12, (4.12) and Proposition 1.18 of *loc.cit* shows that for any integer r,

$$\dim H^0(G - \operatorname{Zip}^{\chi}, (\omega_G^{\flat})^{\otimes r}) \leq 1$$

and there is some positive integer $r = N_G$ such that the above dimension is 1. Then our Hasse invariant Ha is the pull-back of a generator of $H^0(G - \operatorname{Zip}^{\chi}, (\omega_G^{\flat})^{\otimes N_G})$. Moreover, the non-vanishing locus of Ha is independent of multiples of N_G . Many thanks to the audience for their nice questions) Xiaoyu Zhang (U, Duisburg-Essen) Hida theory for GSpin June 10 2020 14/31 Then we have the following result

Theorem (Koskivirta-Wedhorn, 15')

There is a positive integer $N_G > 1$ such that

$$\dim H^0(Sh_1,\omega^{\otimes N_G})=1.$$

Definition

We fix a generator $\text{Ha} \in H^0(Sh_1, \omega^{\otimes N_G})$, the Hasse invariant and define the μ -ordinary locus

$$Sh_1^{\mu} := Sh_1 \setminus V(\operatorname{Ha}).$$

By work of Wortmann, we know that Sh^{μ} is open and dense in *Sh*. Since ω is ample, we can lift some positive power Ha^t from *Sh*₁ to *Sh* and then we put

$$Sh^{\mu} = Sh \setminus V(\operatorname{Ha}^{t}).$$

Using Koecher principal, Ha^{t} extends to a section $\overline{\operatorname{Ha}^{t}}$ over a toroidal compactification \overline{Sh} of Sh and we set $\overline{Sh}^{\mu} = \overline{Sh} \setminus V(\overline{\operatorname{Ha}^{t}})$.

Now we construct modular forms and Hecke operators on Sh as in the classical case.

For each $x \in X$, we have a cocharacter $\nu : \mathbb{G}_m \xrightarrow{z \mapsto (z,1)} \mathbb{S}_{\mathbb{C}} \xrightarrow{h_x} G_{\mathbb{C}}$. Then we write $P \subset G$ for the parabolic subgroup stabilizing (the Hodge filtration induced by) the cocharacter ν . We fix a Borel subgroup and maximal torus

$$T \subset B \subset P \subset G.$$

Now we have a *P*-torsor \mathcal{P} over *Sh*:

$$\mathcal{P} := \underline{\mathrm{Isom}}_{\mathcal{S}h,\mathrm{fil},\mathrm{pol}} \left((\mathcal{O}_{\mathcal{S}h} \otimes_{\mathbb{Z}_{(p)}} \mathcal{C}^+_L, \mathfrak{t}), (e^* \mathcal{H}^1_{\mathrm{dR}}(\mathcal{A}/\mathcal{S}h), \mathfrak{t}_{\mathrm{dR}}) \right)$$

preserving the Hodge filtrations and tensors $\mathfrak{t},\mathfrak{t}_{dR}$ as well as the polarizations.

Write P = LU for the Levi decomposition for P, U the unipotent radical of P. Then $\mathcal{L} = \mathcal{P}/U$ is an *L*-torsor over *Sh*.

For any character $\lambda \in X^*(T)$, we write $\operatorname{Ind}_{B \cap L}^L(\lambda)$ for the induction representation from the character λ and then we put

$$\mathcal{V}_{\lambda} = \mathcal{L} \times^{L} \operatorname{Ind}_{B \cap L}^{L}(\lambda)$$

for the contracted product over L. This is a quasi-coherent sheaf over Sh.

Definition

For any \mathbb{Z}_p -algebra A, we write

$$M_{\lambda}(K,A) := H^0(Sh_A,(\mathcal{V}_{\lambda})_A) = H^0(\overline{Sh}_A,(\overline{\mathcal{V}_{\lambda}})_A)$$

for the space of modular forms on Sh of weight λ , of level K with coefficients in A.

 $S_{\lambda}(K, A)$ is the subspace of $M_{\lambda}(K, A)$ consisting of global sections vanishing at the cusp $\overline{Sh}_{A} \setminus Sh_{A}$.

Another important ingredient in Hida theory is Igusa towers.

Definition

For any k,j>0, fix a point $p_0\in Sh_k^\mu$, we set

$$\mathrm{Ig}_{k,j} := \underline{\mathrm{Isom}}_{\overline{Sh}_{k}^{\mu},\mathrm{pol}}\left((\mathcal{A}[p^{j}],\mathfrak{t}_{\mathcal{A}}), (\mathcal{A}_{p_{0}}[p^{j}],\mathfrak{t}_{\mathcal{A}_{p_{0}}}) \right),$$

an $L'(\mathbb{Z}/p^j)$ -torsor over \overline{Sh}_k^{μ} . Here L' is a certain inner form of L. Then we put

$$\mathbb{V}_{k,j} := H^0(\mathrm{Ig}_{k,j}, \mathcal{O}_{\mathrm{Ig}_{k,j}}), \quad \mathbb{V}_k := \lim_{\substack{\leftarrow j \\ j}} \mathbb{V}_{k,j}$$

$$\mathbb{V} := \lim_{\overrightarrow{k}} \mathbb{V}_k, \quad \mathbb{V}^* = \operatorname{Hom}(\mathbb{V}, \mathbb{Q}_p/\mathbb{Z}_p).$$

These are the spaces of *p*-adic modular forms we will use to *p*-adically interpolate the spaces $S_{\lambda}(K, A)$.

Next we construct the analogue of U_p operators. For each dominant coroot $\alpha \in X_*(T) \subset X_*(T_{C_L^+})$, we define a correspondence $\operatorname{Ig}_{C_L^+,\alpha}$ over the Siegel Shimura variety $Sh_{C_L^+}$ (not over *Sh*) which classifies the quintuples $(\mathcal{A}, \widetilde{\mathcal{A}}, \pi, \psi_j, \widetilde{\psi}_j)$ where

- \mathcal{A} is a principally polarized abelian scheme over \mathbb{Z}_p ,
- [●] ψ_j ∈ <u>Isom</u>(A_{p0}[p^j], A[p^j])/P(ℤ/p^j) with a lift
 ψ_∞ ∈ <u>Isom</u>(A_{p0}[p[∞]], A[p[∞]])/P(ℤ_p) (similarly for \widetilde{A} and $\widetilde{\psi}_j$),
- **③** π : $A \to \widetilde{A}$ a *p*-isogeny such that the induced morphism on their Dieudonné modules satisfies

$$\mathbb{D}(\widetilde{\psi}_{\infty}^{-1} \circ \pi \circ \psi_{\infty}) = \alpha(p) \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{D}(\mathcal{A}_{p_0}[p^{\infty}])) \simeq \operatorname{GSp}(\mathcal{C}_L^+).$$

There is a universal quintuple $(\mathcal{A}, \widetilde{\mathcal{A}}, \pi, \psi_j, \widetilde{\psi}_j)$ over $\mathrm{Ig}_{\mathcal{C}_L^+, \alpha}$. Now we write Ig_{α} for the pull-back of $\mathrm{Ig}_{\mathcal{C}_L^+, \alpha}$ along $Sh^{\mu} \to Sh_{\mathcal{C}_L^+}$ and we get two natural projections

$$pr_{1} \colon Ig_{\alpha} \to Ig_{1,j} \quad (\mathcal{A}, \widetilde{\mathcal{A}}, \pi, \psi_{j}, \widetilde{\psi}_{j}) \mapsto \mathcal{A},$$
$$pr_{2} \colon Ig_{\alpha} \to Ig_{1,j} \quad (\mathcal{A}, \widetilde{\mathcal{A}}, \pi, \psi_{j}, \widetilde{\psi}_{j}) \mapsto \widetilde{\mathcal{A}}.$$

Proposition

Set $m_{\alpha} = [U(\mathbb{Z}_p) : U(\mathbb{Z}_p) \cap \alpha(p)U(\mathbb{Z}_p)\alpha(p)^{-1})]$, then for any sheaf \mathcal{F} over $\mathrm{Ig}_{1,j}$, we have a well-defined map

Now we put

$$e = \lim_{n \to \infty} \left(\prod_{\alpha \text{ dom}} U_{\alpha} \right)^{n!}$$

3

→ Ξ →

47 ▶

Now we can state the control theorem: recall

$$\mathbb{V}_{\infty} = \lim_{\stackrel{\leftarrow}{j}} \mathbb{V}_{\infty,j}, \quad P = LU,$$

$$\mathcal{L} = \mathcal{P}/U, \quad \mathcal{V}_{\lambda} = \mathcal{L} \times^{L} \operatorname{Ind}_{B \cap L}^{L}(\lambda).$$

Theorem (Z.19')

(1) For any character $\lambda \in X^*(T)$, $e\mathbb{V}^U_{\infty, cusp}[\lambda]$ is free of finite rank over \mathbb{Z}_p , bounded independently of λ . (2) For any dominant character $\lambda \in X^*(T)$, one has

$$eH^0(\mathrm{Ig}_{\infty,1}/U,\mathcal{V}_{\lambda})\simeq e\mathbb{V}_{\infty}^U[\lambda].$$

If moreover λ is sufficiently regular, one can descent this map to \overline{Sh}^{μ} :

$$eH^0(\overline{\mathit{Sh}}^\mu,\mathcal{V}_\lambda)\simeq e\mathbb{V}^U_\infty[\lambda]$$

$$eS_{\lambda}(K,\mathbb{Z}_{p})\simeq eH^{0}(\overline{\mathit{Sh}}^{\mu},\mathcal{V}_{\lambda})_{\mathrm{cusp}}\simeq e\mathbb{V}^{U}_{\infty,\mathrm{cusp}}[\lambda].$$

$$\mathbb{V}^* = \operatorname{Hom}(ert \operatorname{lim}_k \mathbb{V}_k, \mathbb{Q}_p / \mathbb{Z}_p).$$

Theorem (Z.19')

(3) Set $\Lambda = \mathbb{Z}_p[[\text{Ker}(T(\mathbb{Z}_p) \to T(\mathbb{Z}/p))]]$. Then $e\mathbb{V}_{\text{cusp}}^{*,U}$ is a finite free Λ -module.

Moreover, for each character $\lambda \in X^*(T)$, we have the specialization map

$$e\mathbb{V}^{*,U}_{\mathrm{cusp}}\otimes_{\Lambda,\lambda}\mathbb{Z}_{p}\simeq\left(e\mathbb{V}^{U}_{\infty,\mathrm{cusp}}[\lambda]
ight)^{*},$$

which is $(eS_{\lambda}(K, \mathbb{Z}_p))^*$ for λ sufficiently regular.

Remark

(1) For the case n = 3, $G = GSpin_{3,2} \simeq GSp_4$,

then the μ -ordinary locus Sh_1^{μ} is coincides with the ordinary locus, the set of points in Sh_1 classifying ordinary abelian schemes \mathcal{A} of dimension 2 over $\overline{\mathbb{F}}_p$ (i.e. $\mathcal{A}[p^{\infty}]$ is an extension of $(\mathbb{Q}_p/\mathbb{Z}_p)^2$ by $\mu_{p^{\infty}}^2$)

Remark

(2) H.Hida constructed such a theory for (G, X) of PEL type with G unitary group such that the ordinary locus $Sh_1^{\text{ord}} \neq \emptyset$, R.Brasca-G.Rosso and E.Ellen-E.Mantovan for the case (G, X) of PEL type with G unitary such that $Sh_1^{\text{ord}} = \emptyset$.

(3)The same strategy works for Shimura varieties of Hodge type (G, X) where G^{ad} has no factor isomorphic to PGL_2/\mathbb{Q} and G is quasi-split at p.

Sketch of proof: one can construct a map of Hodge-Tate to relate the classical modular forms $H^0(\overline{Sh}^{\mu}, \mathcal{V}_{\lambda}) = H^0(Sh^{\mu}, \mathcal{V}_{\lambda})$ to the space of *p*-adic modular forms $\mathbb{V}_{k,j} = H^0(\mathrm{Ig}_{k,j}, \mathcal{O}_{\mathrm{Ig}_{k,j}})$. More precisely, any point $\phi \colon \mathcal{A}[p^{\infty}] \xrightarrow{\sim} \mathcal{A}_{p_0}[p^{\infty}]$ in Ig_m induces an isomorphism

$$\mathrm{HT}_{m}(\phi) \colon e^{*} H^{1}_{\mathrm{dR}}(\mathcal{A}/\overline{Sh}^{\mu}_{m}) \xrightarrow{\sim} e^{*} H^{1}_{\mathrm{dR}}(\mathcal{A}_{\rho_{0}}/\overline{Sh}^{\mu}_{m})$$

which preserves the Hodge tensors t_{dR} , Hodge filtrations and polarizations on both sides. This gives a point in the *L*-torsor $\mathcal{L} = \mathcal{P}/U$ over \overline{Sh}_m^{μ} .

Therefore we get the Hodge-Tate map

$$\mathrm{HT}_m^*\colon H^0(\overline{\mathit{Sh}}_m^\mu,\mathcal{V}_\lambda)\to \mathbb{V}_m^U[\lambda].$$

For dominant λ , the map

$$H^0(\mathrm{Ig}_{\infty,1}/U,\mathcal{V}_{\lambda}) \to \mathbb{V}^U_{\infty}[\lambda]$$

(locally) comes from the injective map $(B_L = B \cap L)$

$$\operatorname{Ind}_{B_{L}}^{L}(\lambda) \to \operatorname{top-Ind}_{B_{L}(\mathbb{Z}_{p})}^{L(\mathbb{Z}_{p})}(\lambda)$$

where the RHS is the space of continuous maps $f: L(\mathbb{Z}_p) \to \mathbb{Z}_p$ such that $f(gb) = \lambda(b)^{-1}f(g)$ for $b \in B_L(\mathbb{Z}_p)$. Each $f \in \text{top Ind}^{L(\mathbb{Z}_p)}(\lambda)$ is determined by its restriction to the dense

Each $f \in \text{top-Ind}_{B_L(\mathbb{Z}_p)}^{L(\mathbb{Z}_p)}(\lambda)$ is determined by its restriction to the dense subset $B_L(\mathbb{Z}_p)B_L^{\text{opp}}(\mathbb{Z}_p)$ of $L(\mathbb{Z}_p)$. Moreover the conjugation by $(\prod_{\alpha \text{ dom}} \alpha(p))^{n!}$ contracts $B_L(\mathbb{Z}_p)^{\text{opp}}$ into

Moreover the conjugation by $(\prod_{\alpha \text{ dom}} \alpha(p))^m$ contracts $B_L(\mathbb{Z}_p)^{opp}$ into $B_L(\mathbb{Z}_p)$.

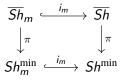
Thus if f(1) = 0, then applying e to f shows that e(f) = 0. As a result we get isomorphisms

$$e \cdot \operatorname{Ind}_{B_L}^L(\lambda) \simeq e \cdot \operatorname{top-Ind}_{B_L(\mathbb{Z}_p)}^{L(\mathbb{Z}_p)}(\lambda) \simeq \mathbb{Z}_p[\lambda].$$

ł

Then one can construct modified Hecke operators \widetilde{U}_{α} taking functions on $\mathrm{Ig}_{\infty,1}$ to functions on $\overline{Sh}_{\infty}^{\mu}$.

For λ sufficiently regular, the difference $\widetilde{U}_{\alpha} - U_{\alpha}$ is divisible by p, and thus applying the projector e gives the isomorphisms $eH^0(\overline{Sh}^{\mu}_{\infty}, \mathcal{V}_{\lambda}) \simeq e\mathbb{V}^U_{\infty}[\lambda]$. We have the following commutative diagram $(m \geq 1)$



Proposition

We have the following isomorphism

$$i_m^* \pi_* \mathcal{V}_{\lambda, \mathrm{cusp}} \simeq \pi_* i_m^* \mathcal{V}_{\lambda, \mathrm{cusp}}.$$

The minimal compactification Sh^{\min} is affine, thus the reduction mod p^m map is an isomorphism $(i_m : Sh_m^{\min,\mu} \hookrightarrow Sh^{\min,\mu})$

$$egin{aligned} &\mathcal{H}^0(\overline{\mathit{Sh}}^\mu,\mathcal{V}_{\lambda,\mathrm{cusp}})\otimes_{\mathbb{Z}_p}\mathbb{Z}/p^m&=\mathcal{H}^0(\mathit{Sh}^{\mathrm{min},\mu},\pi^*\mathcal{V}_{\lambda,\mathrm{cusp}})\otimes\mathbb{Z}/p^m\ &=\mathcal{H}^0(\mathit{Sh}^{\mathrm{min},\mu},i_m^*\pi_*\mathcal{V}_{\lambda,\mathrm{cusp}})\ &=\mathcal{H}^0(\mathit{Sh}^{\mathrm{min},\mu},\pi_*i_m^*\mathcal{V}_{\lambda,\mathrm{cusp}})\ &=\mathcal{H}^0(\overline{\mathit{Sh}}^\mu,i_m^*\mathcal{V}_{\lambda,\mathrm{cusp}}). \end{aligned}$$

Similarly we have $\mathbb{V}_{\infty,\mathrm{cusp}}^{U}[\lambda] \otimes \mathbb{Z}/p^m \simeq \mathbb{V}_{m,\mathrm{cusp}}^{U}[\lambda]$. Moreover, the Hodge line bundle ω over Sh^{\min} is ample over, so for $k \gg 0$, $H^1(Sh^{\min}, \pi_*\mathcal{V}_{\lambda+\underline{k},\mathrm{cusp}}) = 0$ and therefore

$$\mathcal{H}^{0}(Sh^{\min}, \pi_{*}\mathcal{V}_{\lambda+\underline{k}, \mathrm{cusp}})\otimes \mathbb{Z}/p^{m} = \mathcal{H}^{0}(Sh^{\min}, i_{m}^{*}\pi_{*}\mathcal{V}_{\lambda+\underline{k}, \mathrm{cusp}}).$$

$$S_{\lambda+\underline{k}}(K,\mathbb{Z}_p)\otimes\mathbb{Z}/p^m=S_{\lambda+\underline{k}}(K,\mathbb{Z}/p^m).$$

ł

One can show that the multiplication by the Hasse invariant Ha on $S_{\lambda}(K, \mathbb{Z}/p)$ gives rise to isomorphisms $(k \gg 0)$

$$eS_{\lambda+\underline{k}}(K,\mathbb{Z}/p)\simeq eS_{\lambda+\underline{k+N_G}}(K,\mathbb{Z}/p).$$

Since

$$H^{0}(\overline{Sh}_{1}^{\mu}, \mathcal{V}_{\lambda, \text{cusp}}) = \bigcup_{r \in \mathbb{N}} \frac{S_{\lambda + \underline{rN}_{G}}(K, \mathbb{Z}/p)}{\text{Ha}^{r}},$$

applying *e*, we get $eH^0(\overline{Sh}_1^{\mu}, \mathcal{V}_{\lambda+\underline{k}}) = eS_{\lambda+\underline{k}}(K, \mathbb{Z}/p)$ for $k \gg 0$. Using the reduction mod p^m map, we get, for λ sufficiently regular,

$$eH^0(\overline{Sh}^{\mu},\mathcal{V}_{\lambda})=eS_{\lambda}(K,\mathbb{Z}_p),$$

which also shows that $e \mathbb{V}_{\infty, cusp}^{U}[\lambda]$ is free of finite rank over \mathbb{Z}_p , bounded independently of λ .

We deduce the density of the classical modular forms in $\mathbb{V}_{\infty,cusp}$:

$$\mathrm{HT}^*_{\infty}\left(\oplus_{\lambda\in X^*(\mathcal{T})}S_{\lambda}(\mathcal{K},\mathbb{Z}_p)[\frac{1}{p}]\right)\bigcap \mathbb{V}_{\infty,\mathrm{cusp}}$$

We write $\mathbb{T} \subset \operatorname{End}_{\Lambda}(\mathbb{V}_{\operatorname{cusp}}^U)$ for the Hecke algebra generated by the Hecke operators U_{α} and the spherical ones outside p.

The μ -ordinary Hecke algebra $e\mathbb{T}$ is finite flat Λ -algebra. Then each irreducible component of $\operatorname{Spec}(e\mathbb{T})$ is called a Hida family.

By construction, the $\overline{\mathbb{Z}}_{p}$ -points of Spec $(e\mathbb{T})$ correspond to eigenforms of $e\mathbb{T}$ in $e\mathbb{V}_{cusp}^{U}$. For an eigenform $f \in e\mathbb{V}_{cusp}^{U}[\lambda]$ and any other weight $\lambda' \equiv \lambda \pmod{N_G}$, there is an eigenform $f' \in e\mathbb{V}_{cusp}^{U}[\lambda']$ such that $f' \equiv f(\mathfrak{m}_{\overline{\mathbb{Z}}_p})$. So we can choose a sequence of sufficiently regular $\lambda_k \equiv \lambda \pmod{N_G}$ which *p*-adically converge to λ such that the eigenforms $f_k \in e\mathbb{V}_{cusp}^{U}[\lambda_k]$ are all classical and congruent to f.

Recall the adjoint group $G' = G^{ad} = SO(L, Q)$. This is a central extension

$$1 \to \mathbb{G}_m \to \operatorname{GSpin}(L, Q) \to \operatorname{SO}(L, Q) \to 1$$

We can deduce from the Hida theory on $G = \operatorname{GSpin}(L, Q)$ the Hida theory on G' = SO(L, Q). This relies on the construction of the integral model Sh' of the Shimura variety (G', X') of abelian type, which is obtained from Sh by quotient by a finite abelian group Δ (by Kisin). Hida theories on orthogonal groups make it possible to construct *p*-adic L-functions of $(\mu$ -)ordinary families of automorphic representations of $G'(\mathbb{A}_{\mathbb{O}})$ using doubling method, as in the case of Sp_{2n} by Liu, in the case of U_n by Eischen-Harris-Li-Skinner and many other cases. The rough idea is as follows: write $(L, Q) = (L, Q) \oplus (L, -Q)$ for the quadratic space of signature (n + 2, n + 2) and H = SO(L, Q), which contains the diagonal image of $G' \times G'$. For automorphic representations π, π^{\vee} of $G'(\mathbb{A}_{\mathbb{O}})$ and Eisenstein series $E(F(\xi, s), h)$ on $H(\mathbb{A})$ for some section $F(\xi, s) \in \operatorname{n-Ind}_{B_{\mu}(\mathbb{A})}^{H(\mathbb{A})}(\xi_s)$, the doubling method gives

イロト イポト イヨト イヨト 二日

$$(f_1 \in \pi, f_2 \in \pi^{\vee})$$

$$\langle E(F(\xi, s), \cdot)|_{G' \times G'}, f_1 \otimes f_2 \rangle$$

$$= \mathcal{L}^{S}(s + \frac{1}{2}, \pi \times \xi) \langle f_1, f_2 \rangle \prod_{\nu \in S} Z_{\nu}(F_{\nu}(\xi, s), f_{1,\nu}, f_{2,\nu})$$

Now one can try to apply differential operators to the Eisenstein series to construct an explicit *p*-adic family of Eisenstein series (and show its restriction to $G' \times G'$ is μ -ordinary cuspidal modular forms). This gives us a *p*-adic family $\mathcal{E}(F(\xi))$ with values in the μ -ordinary families of modular forms (on $G'(\mathbb{A}) \times G'(\mathbb{A})$). Hida theory then applies to show that for any sufficiently regular weight λ , for any μ -ordinary automorphic representation $\pi \subset \mathcal{A}(G'(\mathbb{A}))$ corresponding to this weight λ , $\mathcal{E}(F(\xi))(\pi) = L^{\mathcal{S}}(s_0 + \frac{1}{2}, \pi \times \xi) \times *$.

Thank you for your attention!