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Automorphic L-functions, |

vy

F: number field with adele ring A
G: split reductive group over F
m: irreducible cuspidal automorphic representation of G(A)

T = Q| m,: restricted tensor product, where 7, is unramified
for almost all places

GV: dual group of G
p:GY = GLs(C).



Automorphic L-functions, Il

For an unramified place v:

» Satake isomorphism: 7, unramified <+ Satake parameter t, (a
semi-simple conjugacy class in GV).

> qv = #OV/PV

» Local L-function:

1
det(l_ p(tv)q;s) .

Fix a finite set of places such that 7, is unramified if v¢ S.
Define global partial L-function:

s7rp HL (s, 7y, p

vgS

LV(S, Ty, p) =



Automorphic L-functions, Il

Basic question

Show that L>(s, 7, p) admits meromorphic continuation to C, and
has a functional equation for s+— 1 — s.

Basic method
Find a global integral that represents the desired L-function.

To obtain an Euler product, almost all examples use some kind of
multiplicity one results.
Examples
» Rankin-Selberg integrals for GL,, x GL, (Jacquet —
Piatetski-Shapiro — Shalika): uniqueness of Whittaker models
» Langlands-Shahidi method: uniqueness of Whittaker models

» Godement-Jacquet integrals: matrix coefficients (works for all
cuspidal representations)

» Doubling integrals: matrix coefficients



Covering groups

Notable example (metaplectic groups)

1 = p2 — Mpsy, — Spy, — 1.

A covering group is typically of the form (central extension)

locally: 1 — u, — G(F,) — G(F,) — 1
globally: 1 — u, — G(A) — G(A) — 1

More general construction

Explicit 2-cocycle in H2(G, tn): Weil, Kubota, Moore, Matsumoto,
Kazhdan-Patterson, Banks-Levi-Sepanski...

Recently

A class of covering groups following Brylinski-Deligne (2001),
which is more algebraic and functorial.



Brylinski-Deligne extensions, |

» G: split reductive group over F
» T: maximal split torus of G
» Y: cocharacter lattice of T

CEXt(G, Kg)

the (Picard) category of central extensions
1-Ky—>G—-G—1

as sheaves of groups on the big Zariski site over Spec(F).



Brylinski-Deligne extensions, Il

Classification by Brylinski-Deligne

CExt(G, K2) is equivalent to BD(G, T) which is a simpler and
concrete category.

When G is simply-connected, then G is classified by a Weyl
invariant quadratic form @ on Y.

Example
G = Spy,. The Dynkin diagram is given by

] =09 — Q3 — -+ — Qy
A Weyl invariant quadratic form is determined by Q(a).

The metaplectic groups in the usual sense (double cover of
symplectic groups) can be obtained from this Ko-extension.



Brylinski-Deligne extensions, IlI

Connection with topological covering groups
(Matsumoto) For a field L,

Ko(L) = L* @z L*/{a® (1 — a)|a # 0, 1).

For a local field L, the Hilbert symbol
(—,—): L x L* = Kao(L) = p(L)

where p(L) is the group of roots of unity.



Topological covering groups, |

Let v be a local place of F with u, C F, get

1 —— Ko(F)) ——— G(F) G(F)) 1
l(_z_)" l
]_ ,LLn EV GV — G(FV) e ].

Globally, get B
1= pn— G(A) — G(A) — 1.



Topological covering groups, |l

The Ky-extension carries information that allows us to do research
in automorphic forms (without the use of cocycles):

» a canonical splitting over any unipotent subgroup of G

» a natural splitting over G(O,) at almost all v. (Satake
isomorphism)

» a natural splitting G(F) — G(A). This allows us to talk about
automorphic forms.



Automorphic representations on covering groups, |

Recent progress

» Gan-Gao-Weissman 2018: L-groups and the Langlands
program for covering groups

Most of the basic theory of automorphic representations holds in
this case.

For example, fix a finite set of places of S which is large enough.
Given a representation p : [ GL,(C), one can define the
(partial) automorphic L-function

57rp HLSﬂ'V,

V¢S



Automorphic representations on covering groups, |l

Question

» Meromorphic continuation and functional equations for some
L-functions for covering groups?

Obstruction

“Multiplicity one results” fail in general for covering groups.

In particular, uniqueness of Whittaker models fails in general for
covering groups.

This means that it is much harder to obtain Euler product for
covering groups.



Recent progress, |

Langlands-Shahidi L-functions for covering groups
Gao 2018: calculate constant terms of Eisenstein series on BD
covering groups.

Consequence: meromorphic continuation of many interesting
L-functions.

However, since uniqueness of Whittaker models fails, it seems
difficult to deduce functional equations.



Recent progress, |l

Doubling integrals

» Piatetski-Shapiro — Rallis: standard L-functions for classical
groups

» C.-Friedberg-Ginzburg-Kaplan: tensor product L-function of a
classical group and a general linear group, generalizing the
doubling integrals. (Twisted doubling integrals.)

» Kaplan 2019: covers of symplectic groups.

> C. 2019: set up the global integrals for Brylinski-Deligne
extensions of all classical groups.
(Excluding certain covers of unitary groups due to an extra
complication.)



The doubling zeta integrals, |

> W = (W,(, )): aquadratic space over F
> W: vector space over F of dimension m
» (, ): non-degenerate bilinear form on W
» G= G(W): isometry group of W.
Examples: Sp,,, Op.
Remark

One can also include cases such as: SOy, inner forms of Sp,,, SOp,
and unitary groups.



The doubling zeta integrals, Il

The doubling map
Define W™ = (W, (, )Y) where
W-=w,e w_

and
<(X+7X—)7 <y+7y—)>D = <X+7y+> - <X—7y—>'

Define G& = GOW™).
The group G x G acts on W- via

(81:82) - (X4, x=) = (g1x+, §2X-).
This gives a homomorphism

1:Gx G— G,



The doubling zeta integrals, Il

Siegel parabolic subgroup
Define
WA = {(x,x) € W :xe W},

Then {, Y uaxwa =0, i.e. WA is a totally isotropic subspace.
This gives a Siegel parabolic subgroup P(W2) = M(W2)N(WA)
or P= MN.
Eisenstein series

> x: FP\AX - C*

> x odet is a character of GL,(F)\GL(A); this gives a

character of M(F)\M(A)
G (A)

> I(s,x) = Indp,) (x odet) - 55
> f%) € I(s, x), one attaches an Eisenstein series

Ef N = > A(e).
+eP(A\GT(F)



The doubling integrals, IV

» 7 irreducible cuspidal representation of G(A)
> fleﬂ'andeEﬂ'v

Global zeta integral

Z(61 R &, £9) =

£1(g1)6(g2) E(F9)(1(g1. 82)) dg1 deo.
GIF)\G(A) X G(P\G(A)



The doubling integrals, V

Unfolding

26 R &y, £9) = / Plr(g)es K &)£ (g o)) dg,
G(A)

where
PaRL - [ G@ae d
G(F\G(A)
This is an Euler product since P is decomposable and local

components of one-dimensional representations are
one-dimensional.

Unramified calculation

Z(61 K&y, £9) ~ L(s,m x x).



The twisted doubling integrals, |

Goal: tensor product L-function G x GLy.
The doubling map
> WHK = (WK (\EK) where

> WK — M@...@M}E
> <7 >D’k:<’ >I1:‘@"'@<’ >E
> GEI,k — G(WD’k)
> (g1,42) € G x G acts on Wk via
(81,82) (X140, X1, Xo, Xa—y =+ + ) Xiey, Xk—)
=(g1X1+, 82X1—, &1X2+,81X2—, " ; 81Xk 81Xk—)-

This defines a homomorphism ¢4 : G x G — GU.



The twisted doubling integrals, Il

Siegel parabolic subgroup
Define
WAk=nt e ..o W,

This is a maximal totally isotropic subspace of W=k,
Define P = P(WAk) ¢ GP*

Fourier coefficient associated with the nilpotent orbit
((2k— 1)m1m)

In one moment.



Degenerate Whittaker coefficients, |

Nilpotent orbits

Let Ay be the set of nilpotent elements in a semisimple Lie algebra
g. Under the adjoint action, it becomes a disjoint union of
nilpotent orbits.

» GL,, case: the theory of Jordan canonical form
» Nilpotent orbits of GL,, are in bijection with partitions of m.

» For classical groups, nilpotent orbits are in bijection with
partitions with additional assumptions.

» There is a partial order on the set of nilpotent orbits



Degenerate Whittaker models/coefficients, I

Examples
The orbit (32):

0 00
10 00
10 1000
0 o fe =10 1 0 0
10 1000
10 0100

Observe: image of
GL; — GLs, g+ diag(g. & 8)

lies in the stabilizer of f(32).
Generalization: for the orbit (k), its stabilizer contains the image
of

GL, — GLxp, g— diag(g, g, ,8).



Degenerate Whittaker models/coefficients, Il

Example: orbit (3%1?)

_ O
= O
i)
_ O

Note: the image
GL2 X GL2 — GLS,

lies in the stabilizer of f32;2.

or f(3212) =

(g1, 82) — diag(g1, 81,81, 82)

o= O O

o O O

O = O O

_ o O O

o O

o O

o O

o O




Degenerate Whittaker models/coefficients, 1V

This can be generalized to the orbit ((2k — 1)"1"):
one can choose a nice representative so that the stabilizer of this
representative contains the image of

GL,xGL, — GLakp, (g1, &) — diag(g1, &2, 81,81, ,&1,81)-



Degenerate Whittaker models/coefficients, V

The Whittaker model
This is attached to the orbit (n):
For example, if G= GL, and

1 wy x* *

1 uss *

Np=<qu= 1 *
1

A generic character is of the form
YN, (u) = (U2 + g + -+ + Up_1,n)

where 1) is a nontrivial additive character of F\A.



Degenerate Whittaker models/coefficients, VI

One can write this as

Y, (u) = P(tr(fm)u))

where

_= O
—_— O

finy =

10

This defines a Fourier coefficient associated to the nilpotent orbit

(n).



Another example

Consider
L X1 Y
N(32) = U= b Xy ] € GL6
I
and
Y32y (u) = P(tr(X1 + X2)).
Equivalently,
Pa2) (u) = P(tr(fiz2)u)).
0
Recall that fz2y = | 0 . This defines a Fourier coefficient
L 0

associated to the nilpotent orbit (3%).



Degenerate Whittaker models/coefficients, VII

Whittaker pair (S, ¢)

» (S,p) € g x g* such that S is rational semi-simple and
ad.(S)() = —2.
» Using the Killing form, ¢ <> f€ g, and fis nilpotent

Degenerate Whittaker model
> g = &®;g; according to eigenvalues of S; assume that 1 is not
an eigenvalue
> n=®j19; and N = exp(n)

» |, is a character of n and hence a character iy of N



Degenerate Whittaker models/coefficients, VIII

Degenerate Whittaker models/coefficients
For a representation 7, locally we consider

Homy(m, ¢n).

Globally, for ¢ € w, we consider
[ fugn(e) du
N(F)\N(A)

Nilpotent orbit attached to a representation

We say that the nilpotent orbit attached to a representation 7 is O
if O is the maximal nilpotent orbit that supports a nonzero
degenerate Whittaker model/coefficient.



The twisted doubling integrals, Il

A Fourier coefficient in the orbit ((2k — 1)™1™)

One can choose a nice pair (U, 1) (for the group G=F) in the
orbit ((2k — 1)™1™) such that

Lk(G X G) C Stab(U,¢U).

(This does not appear when k =1.)

Eisenstein series

» 0: an automorphic representation GLjm(A) such that (k™) is
the maximal orbit that supports a nonzero Fourier coefficient
(with unique models at every local place).

> I(s,6) = Indg, (V9 - 53

> £) € I(s,6), one attaches an Eisenstein series

EfN = > (e,
+EP(P\GL4(F)



The twisted doubling integrals, IV

» 7 irreducible cuspidal representation of G(A)
> £1€7Tand€2€ﬂ'v

The global integral
We define Z(£; X &, £9)) =

§1(g1)62(82)
GUP\G(A) X G\ G(A)

/ E(f9) (u- 11, 82)) Yu(u) du dgy ds.
U(F)\U(A)

Unfolding

Z(€1 W &, £9) = Euler product...



Generalized Speh representations

The construction of 8 decides the L-function.
Fix an integer m.

» 7 irreducible cuspidal automorphic representation of GLk(A)

» Let O(m,T) be the unique irreducible quotient of
7| - ,(m—l)/2 X 7| ‘(m—?’)/2 X oo X 7| - ‘—(m—l)/?

» Can also be realized as residues of Eisenstein series.

In other words,
T € Irreusp(GLK(A)) — 0(m, T) € Irr(GLjm(A)).

Key properties:
» the nilpotent orbit attached to 6(m, ) is (k™).

> at every local place v, there is a unique model of degenerate
type for O(m, 7),.



L-functions

Examples
» 7 € Irreusp(GL(A)), construct §(m, 7) of GLgm(A), then

Z(& R &, A9) ~ L(s,m x 7).
» 7 € Irreusp(GLy,(A)) for i=1,---,¢. Construct
O(m,m)X---XO(m, 1),
then

(flgf%f(s)w L(s,m x 11)---L(s,m X 7p).



Covering group case, |
» G € CExt(G,Ka).
» ¢ a fixed embedding p, — C*

» 7 irreducible e-genuine cuspidal automorphic representation
of G(A)
> e-genuine: u, acts via €

Theorem
There is a global integral involving 7 that represents an Euler
product.

Main step
Given G € CExt(G,K3y), construct

GEk e CExt(GPK Ky)
which is compatible with

1 G x G — GPX,



Covering group case, |l

L-function = 7
This is related to the construction of 8, which is currently unknown
in general.



Construction of 8, |

Ir(GLY (A))
> dim Wh(r,) > 1 for almost all 7 € Irr(GL\” (A))

» Possible: dim Wh(7,) = 1 for the smallest piece of a highly
reducible induced representation.

Naive idea
As in the linear case,

T € Iteusp(GLLY (A)) > 0 (m, 7) € Irr(GLYY, (A))

Hope that the nilpotent orbit attached to 8(") (m, 1) is ((kn)™)
(and with unique local model at every local place).

This will not work due to the existence of cuspidal theta
representations.



Construction of 4, Il

(Conjectural picture of Toshiaki Suzuki (1998)) Assume the there
is a Shimura lift o

Sh : GLk(A) — GLk(A)
which is local-to-global compatible. Then it can be constructed by
the following diagram:

IITcusp(ﬁk) 77777777777777 ’ Irr(ﬁi’,’gn)
A} 9(n>(m, _
Sh=t Sh~1
! 0(mn,—)
T € Irreysp(GLk) Irr(GLgmn)

Assuming this, the global zeta integral represents a G x GLy
L-function:

(£1®£2’f(5)) (S 7T><T)



Construction of 6, Ill

Some evidences when m =1
» k=1,n=2: Weil representation
» k=1,n=3: cubic theta representation. Can be realized by
the Converse theorem or the theta correspondence using the
cubic cover of the exceptional group Ga.
» k=2,n=2:(7) the theta correspondence using the double
cover of the exceptional group Fy.



