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Errata

Version: 2020-03-15

The author is grateful to Professor Yongquan Hu for indicating many mistakes.

• Exercise 1.4.2 Need an extra condition 𝑝 > 2, otherwise there are obvious coun-
terexamples.

• Theorem 3.5.6 There are gaps in this proof. Please refer to J. Neukirch,Algebraic
Number Theory, Chapter IV. §3 (especially (3.3) Theorem) for a complete proof
which involves the use of Pontryagin duality, etc.

• Section 8.2 The exposition here is in chaos. Please see the Part 3, §3.2 of these
lecture notes for an improved version.

• Section 9.4 In the definition of Galois action on𝑊, we should assume 𝛤 ′ to be of
finite index and open in 𝛤 . Also, the action should be additive, i.e. 𝜎(𝑤1 + 𝑤2) =
𝜎(𝑤1) + 𝜎(𝑤2).

• Proof of Theorem 9.4.1 The last step concerning the bijectivity betweenHom-sets
is unnecessary.

• Lemma12.2.3 Thedefinition of ind𝐺
𝐻(𝑊) → 𝑃(𝑊) shouldmap 𝑓 to∑𝑔̄∈𝐻\𝐺 𝑔−1⊗

𝑓 (𝑔), where 𝑔 is any representative of the coset ̄𝑔.

The inverse map 𝑃(𝑊) → ind𝐺
𝐻(𝑊) is obtained as follows: write 𝐹𝐺 ⊗𝐹𝐻 𝑊 =

⨁
𝑔̄∈𝐻\𝐺

𝑔−1𝐹𝐻 ⊗𝐹𝐻 𝑊. Given 𝑔 ∈ 𝐺, let ̄𝑔 ∈ 𝐻\𝐺 be the coset it belongs to. Then

𝑔 furnishes an isomorphism from the summand 𝑔−1𝐹𝐻 ⊗𝐹𝐻 𝑊 = 𝑔−1 ⊗ 𝑊 to
𝑊, namely by discarding the first tensor slot 𝑔−1. This allows us to associate to
any element of 𝐹𝐺 ⊗𝐹𝐻 𝑊 a function 𝑓 ∶ 𝐺 → 𝑊, which is readily seen to be in
ind𝐺

𝐻(𝑊).
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FOREWORD

These lecture notes were prepared for the graduate course Algebra I (210002H) during
September 2014 – January 2015 at the University of Chinese Academy of Sciences, Yanqi
Lake campus. The last few chapters on non-commutative rings and representation the-
ory are based on earlier lectures during 2013-2014. Each lecture, or more appropriately
each chapter in these notes, took roughly one week.

This is not a standalone lecture series on algebra. We presume some knowledge
about:

(i) undergraduate abstract algebra, including the notions of groups and rings;
(ii) rudimentary set theory, namely some familiarity with cardinalities;

(iii) a certain “common sense” about categories and functors — the student is expected
to take some statements for granted.

For the relevant backgrounds we will often refer to [11, 12, 16]; however, there was
no prescribed textbook during our course. The author bene�ted a lot from [16, 12, 14,
15, 22], as well as other textbooks in Chinese which are not included in the bibliography
due to TEXnical di�culties.

Our course was taught in 90% Taiwanese-accented mandarin and the lecture notes
were delivered weekly. As a result these notes were written rather hastily with lots
of mistakes in both mathematics and English, and they re�ect the author’s eccentric
mathematical taste as well. Due to the manner in which these notes were prepared,
there are minor inconsistencies in notations and there are no cross-references between
di�erent chapters. Categories are mentioned but the discussion is far from adequate;
the expositions on representation theory are especially unsatisfactory. The author takes
full responsibility for all these defects.

As for the photos and pictures in these notes (usually irrelevant), their sources are
explicitly stated whenever possible.

These notes are certainly not intended for publication. Nonetheless some coura-
geous people might �nd them useful. The author would like to express his deep grati-
tude to all the students attending this course for their patience, tolerance and constant
support, as well as many corrections.

◆ The cover page uses the fonts Bebas Neue and League Gothique, both licensed
under the SIL Open Font License.
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BACKGROUNDS

Throughout this course, the reader is assumed to have acquaintance with undergrad-
uate algebra, namely the basic notions about sets, groups, rings and modules. Details
can be found in any decent textbook such as [11]. In order to recall the relevant notions
(in English!) and to �x the notations, we give a recapitulation below.

Sets We work in the framework of ZFC set theory. The usual operations on sets are:
∩, ∪, ×, ⊔ (= disjoint union); the Cartesian product (resp. intersection, union,
disjoint union) of a family of sets {Ei : i ∈ I} is denoted by

∏
i∈I Ei (resp.

⋂
i∈I Ei ,⋃

i∈I Ei ,
⊔

i∈I); the set of maps from X to Y are denoted by YX . The cardinality
of a set E is denoted by |E | or #E. For the most part in this course, we neglect
set-theoretic issues such as proper classes, etc.
If f : X → Y is a map and E ⊂ Y, we write f −1(E) :� {x ∈ X : f (x) ∈ E}; when
E � {y} we use the shorthand f −1(y) � f −1({y}), commonly called the �ber of f
over y.
The symbol A :� B reads as “A is de�ned to be B”. The arrow ֒→ (resp.։) means
an injection (resp. surjection), and x 7→ y means that the element x is mapped
to y. If ∼ is an equivalence relation on a set E, the corresponding quotient set is
denoted by E/ ∼.
We admit Zorn’s Lemma: let (P, ≤) be a partially ordered set. If every chain (i.e.
totally ordered subset) of P has an upper bound in P, then there exists a maximal
element in P. Zorn’s Lemma is known to be equivalent to the Axiom of Choice.

Group A group is a set G endowed with a binary operation (“multiplication”) (x , y) 7→
x · y � x y, such that
⋆ associativity holds: x(yz) � (x y)z, so that one may safely write them as x yz;
⋆ the unit element 1 exists: x · 1 � 1 · x � x for all x — we refrain from the

common but awkward symbol e for the unit;
⋆ every element x ∈ G is invertible: there exists x−1 ∈ G, necessarily unique,

such that xx−1 � x−1x � 1.
If we remove the existence of inverses, the structure so-obtained is called a monoid.
When G is commutative/abelian, i.e. x y � yx holds true for all x , y ∈ G, it is

1
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customary to write the group operations in the additive manner: x + y, 0, −x
instead of x y, 1 and x−1, respectively. In this case we say G is an additive group.
The notation H ⊳ G means that H is a normal subgroup of G. The symmetric
group on n letters, say {1, . . . , n}, will be denoted bySn .

Rings Unless otherwise speci�ed, the rings are assumed to have multiplicative unit
element 1. Therefore, a ring R is an additive group (R, +, 0) together with a mul-
tiplication map (x , y) 7→ x · y � x y that makes (R, ·, 1) into a monoid. These
structures are related by distributivity:

x(y + z) � x y + xz , z(x + y) � zx + z y.

The standard example for a commutative ring is the ring of integers �, the non-
commutative case is best illustrated by the ring of n × n-matrices. An element
x ∈ R is called invertible (or a unit of R) if ∃y ∈ R, x y � yx � 1; in this case y
is unique and we denote it as x−1. The units form a group under multiplication,
denoted as R×.

Fields When R r {0} � F×, we call R a division ring; a �eld is a commutative division
ring. We shall write

�,�,�

for the �elds of rational, real and complex numbers. The �nite �eld with q ele-
ments (q: a prime power) is denoted as �q .
Let F[X] stand for the ring of polynomials in the indeterminate X with coe�cients
in F. Its �eld of fractions is denoted by F(X), called the ring of rational functions in
X. By construction, F(X) consists of quotients P/Q where P,Q ∈ F[X] and Q , 0.
Likewise, one can de�ne their multivariate avatars F[X,Y, . . .] and F(X,Y, . . .).
We will also encounter the broader case of the polynomial ring R[X, · · · ] over a
commutative ring R.

Homomorphisms are maps that respect algebraic structures, namely the conditions
such as ϕ(x y) � ϕ(x)ϕ(y) and ϕ(1) � 1 are imposed. For a homomorphism ϕ between
groups (resp. rings), we denote its kernel and image by ker(ϕ) :� ϕ−1(1) (resp. ker(ϕ) :�
ϕ−1(0)) and im(ϕ).

There is also a notion of “substructures”, namely the subgroups, subrings, etc. A
subgroup N ⊂ G is called normal if xNx−1 ⊂ N for all x ∈ G, in which case we write
N ⊳ G. To a normal subgroup one associates the quotient group G/N .

As for rings, it turns out that the two-sided ideals play a rôle similar to that of normal
subgroups. Let R be a ring. An additive subgroup I of R is called a (two-sided) ideal if
xI ⊂ I and Ix ⊂ I for all x ∈ R. For commutative rings one may simply speak of ideals,
without specifying the sides. The quotient ring R/I is the additive quotient group R/I
equipped with the multiplication (x + I)(y + I) � x y + I.

The two-sided ideal generated by elements x1, . . . , xn ∈ R will be written as

(x1, . . . , xn).

Further discussions on rings and ideals will be deferred to another lecture.



LECTURE 1

FIELD EXTENSIONS

1.1 Fields
We begin by reviewing the rudiments of �eld theory. Any ring R admits exactly one
homomorphism from �, namely

� −→ R
a 7−→ a · 1.

Its image must be of the form �/p� for a uniquely determined integer p ≥ 0. Assume
that R has no zero-divisors, i.e. x y � 0 ⇐⇒ x � 0 ∨ y � 0, then so is �/p�, and one
concludes immediately that p is either a prime number or zero.

De�nition 1.1.1. Let F be a �eld. Its characteristic is the number p above. Denote it by
char(F).

De�nition 1.1.2. An intersection of sub�elds of F is still a sub�eld, thus it makes sense
to talk about the smallest sub�eld inside F. Call it the prime �eld of F.

Any sub�eld must contain 1, 0 and every expression that can be obtained from �eld-
theoretic operations. Thus

⋆ either char(F) � 0, in which case � ֒→ F and we obtain a copy of � inside F by
inverting the nonzero integers;

⋆ or char(F) � p > 0, in which case we obtain a copy of �/p� �: �p inside F.

Summing up, the prime �eld of F is � or �p , according to whether char(F) is zero or a
prime number p.

Next comes the notion of compositum.

De�nition 1.1.3. Let F, F′ be two sub�elds of an ambient �eld L. Their compositum,
written as FF′, is the smallest sub�eld of L containing both F and F′. More concretely,
the elements of FF′ take the form

x1x′1 + · · · xn x′n
y1 y′1 + · · · ym y′m

∈ L

3
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with xi , yi ∈ F, x′i , y′i ∈ F′ such that the denominator is nonzero.
Likewise, the compositum of an arbitrary family of sub�elds inside L can be de�ned.

Note that a ring homomorphism between �elds ϕ : F → E must have kernel equal
to {0}. Thus, instead of talking about homomorphisms, one may concentrate on embed-
dings of a �eld F into another �eld. If E ⊃ F, we say that E is a (�eld) extension of F; it
is customary to write such an extension as E/F — do not confuse with quotients! Field
extensions will be the main concern of this lecture.

Let E/F be an extension. Note that E forms an F-vector space: the addition in E and
the scalar multiplication of F on E come from their ring structures.

De�nition 1.1.4. The degree of E/F is de�ned as dimF E, also written as [E : F]. Exten-
sions of �nite degree are called �nite extensions.

Here [E : F] is regarded as a cardinal number.

Lemma 1.1.5 (Tower property). If F ⊂ E ⊂ L are �elds, then

[L : F] � [L : E][E : F]

as cardinal numbers. In particular, L/F is �nite if and only if L/E and E/F are both �nite.

Proof. Choose a basis B (resp. C) of the F-vector space E (resp. of the E-vector space L).
Every element v ∈ L has a be uniquely expression

v �

∑

c∈C

γcc (�nite sum), γc ∈ E.

Expanding each γc as an F-linear combination γc �
∑

b∈B γb ,cb, we arrive at a unique
expression

v �

∑

b∈B
c∈C

γb ,cbc , γb ,c ∈ F.

This provides a basis for L which is in bijection with B × C, proving our assertions. �

1.2 Algebraicity
The innocent-looking notion of �niteness is directly related to algebraicity, as reviewed
below. Consider an extension E/F. For any element u ∈ E, we write F(u) as the sub�eld
generated by u, that is:

F(u) �
⋂

F⊂E′⊂E
u∈E′

E′ ⊂ E.

Its elements can be expressed as P(u)/Q(u), where P,Q ∈ F[X] are polynomials and
Q(u) , 0. On the other hand, we denote

F[u] :� {P(u) : P ∈ F[X]}
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Figure 1.1: Ernst Steinitz (1871-1928) initiated the axiomatic study of �elds (in German:
der Körper) in [25]. He also introduced the fundamental concepts such as prime �elds,
transcendence degree, etc. (DOI: 10.1515/crll.1910.137.167)

which is a subring of F(u). Furthermore, we may allow more than one generators
u , . . . ,, and obtain F(u , . . .) and F[u , . . .] in the evident manner.

The element u is said to be algebraic over F, if there exists a nonzero polynomial
P ∈ F[X] such that P(u) � 0. Non-algebraic elements are called transcendental. When
E � � ⊃ � � F, we recover the familiar notion of algebraic numbers.

Lemma 1.2.1. If u ∈ E is algebraic over F, there exists an irreducible polynomial P ∈ F[X],
unique up to multiplication by F×, such that

[Q ∈ F[X], Q(u) � 0] ⇐⇒ P |Q.

We may normalize P so that P is “monic”: P(X) � Xn +an−1Xn−1+ · · · a0. Call it the minimal
polynomial of u.

Proof. Let P be a polynomial satisfying P(u) � 0 with lowest possible degree. It must
be irreducible. If Q(u) � 0, Euclidean division furnishes R ∈ F[X] with deg R < deg P
and P |Q − R. The minimality of deg P thus implies R is the zero polynomial. �
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Conversely, �nite extensions may be constructed by taking an irreducible P ∈ F[X]
and form the quotient ring F[X]/(P), which is a �eld and contains F � F · (1 + (P)).
Indeed, the irreducibility of P implies that F[X]/(P) is a �eld, by a standard result in
algebra.

Proposition 1.2.2. Let u ∈ E be as above. Then u is algebraic over F if and only if F(u)/F is
�nite; in this case F(u) � F[u] and there is a ring isomorphism

(1.1) F[X]/(P)
∼−→ F(u)

Q 7−→ Q(u),

where P is the minimal polynomial of u. In particular, [F(u) : F] � deg P.

Proof. Assume u algebraic and let P � Xn + an−1Xn−1 + · · · + a0 be the monic minimal
polynomial of u. We claim that every element in F[u] r {0} is invertible, and therefore
F(u) � F[u]. Indeed, if Q(u) , 0, then P ∤ Q and irreducibility of P together with the
Euclidean division entail that

1 � PU + QV

for some U,V ∈ F[X]. Evaluation at u furnishes Q(u)V (u) � 1, whence our claim. It
follows that the homomorphism (1.1) is surjective. The previous Lemma implies the
injectivity of (1.1). Therefore F[X]/(P)

∼→ F(u).
Conversely, if F(u)/F is �nite, then there must be an F-linear relation between 1, u , u2, . . .

which a�ords the required algebraic equation for u. �

On the other hand, the structure of F(u) in the transcendental case is simpler — it
is just the �eld of rational functions.

Proposition 1.2.3. An element u ∈ E is transcendental over F if and only if

F(X) −→ F(u)
Q/R 7−→ Q(u)/R(u), Q , R ∈ F(X), R , 0

de�nes a ring homomorphism, in which case it is actually an isomorphism.

Proof. Since F(u) consists of the “rational functions” in u, the map will be a surjective
ring homomorphism provided that it is well-de�ned, which is in turn equivalent to
that R � 0 ⇐⇒ R(u) � 0 for any R ∈ F[X]. The last condition is clearly equivalent to
the transcendence of u over F; it also implies that F(X) → F(u) is injective, thus is an
isomorphism. �

Proposition 1.2.4. Let E/F be an extension. If α, β ∈ E are algebraic over F, then
⋆ α + β,
⋆ αβ,
⋆ α−1 (when α , 0)

are all algebraic over F. Consequently, a compositum of algebraic extensions is still algebraic.

Proof. Consider the extensions F ⊂ F(α) ⊂ F(α, β). The elements listed above all be-
long to F(α, β). Note that β is algebraic over F(α) (of course, enlarging the base �eld
preserves algebraicity). By Proposition 1.2.2, both [F(α) : F] and [F(α, β) : F(α)] are
�nite. The assertion follows from Lemma 1.1.5. �
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Note that this is just an abstract result: it is not so easy to determine the minimal
polynomial of α+β, etc. in practice. Another consequence is that the algebraic elements
in E forms a subextension Ealg/F.

Exercise 1.2.5. Determine the minimal polynomial of the algebraic number
√

2 +
√

3
over �.

An extension E/F is called algebraic if every element u ∈ E is algebraic over F.
Proposition 1.2.2 implies that E/F is algebraic if and only if it is a union of �nite exten-
sions of F.

Exercise 1.2.6. If L/E and E/F are both algebraic, then L/F is algebraic as well.

At the other extreme, given a �eld F and a possibly in�nite set Γ, we may form
the �eld F(Γ) of rational functions with indeterminates in Γ; when Γ � {X1, . . . ,Xn }
we recover the familiar F(X1, . . . ,Xn). Unlike the algebraic setting, Γ is algebraically
independent: there are no non-trivial polynomial relations among elements in Γ. It can
be shown that every �eld extension E/F has a decomposition

E ⊃
algebraic

F(Γ) ⊃ F

for some algebraically independent subset Γ ⊂ E; moreover the cardinality of Γ is
uniquely determined by E/F, called the transcendence degree of E/F. This should be
compared with the the notio of bases and dimensions in linear algebra.

1.3 The algebraic closure
De�nition 1.3.1. A �eld F is called algebraically closed if every polynomial P ∈ F[X] has
a root in F. This is equivalent to that every P ∈ F[X] splits into linear factors (i.e. of
degree one).

Equivalently, being algebraically closed means that every P ∈ F[X] factors into lin-
ear factors: P(X) �

∏deg P
i�1 (X − ai) where ai ∈ F. The best known example is �.

Henceforth we �x our “ground �eld” F and study various extensions thereof. Let
E/F, E′/F be two extensions, an F-embedding is an embedding E → E′ of �elds which
induces id on F. Likewise we have the notion of F-isomorphisms, etc.

Lemma 1.3.2. Consider an extension F(u)/F where u is algebraic with minimal polynomial
P. If E/F is an extension and v ∈ E satis�es P(v) � 0, then there exists a unique F-embedding
ι : F(u) → E such that ι(u) � v.

Proof. The uniqueness is clear. In view of Proposition 1.2.2, we may construct ι by the
diagram

F(u) F[X]/(P) F(v) E

u X v

ι

∼ ∼

in which every arrow is an F-embedding. �



8

De�nition 1.3.3. An algebraic extension F̄/F is called an algebraic closure of F if F̄ is
algebraically closed.

The basic example is the �eld of algebraic numbers in � that forms an algebraic
closure of �.

Theorem 1.3.4 (E. Steinitz). For every �eld F, there exists an algebraic closure F̄ of F. More-
over, F̄ is unique up to F-isomorphisms.

Proof. Establish the uniqueness �rst. Let F̄, F̄′ be two algebraic closures. Introduce the
relation ≤ on the nonempty setP of F-embeddings E → F̄′, where E/F is a subextension
of F̄/F, by stipulating that

(ι : E → F̄′) ≤ (ι1 : E1 → F̄′) ⇐⇒ [E ⊂ E1, ι1 |E � ι] .

It is easy to see that (P , ≤) is a partially ordered set. We want to apply Zorn’s Lemma to
get a maximal ι : E → F̄′; indeed, every chain in (P , ≤) has an upper bound — simply
take union! By Lemma 1.3.2, maximality implies E � F̄.

It remains to show that ι(F̄) � F̄′. To see this, note that the algebraically-closeness
of F̄ transports to ι(F̄). This implies ι(F̄) � F̄′, since for every u ∈ F̄′, the roots of the
minimal polynomial of u over F already lie in ι(F̄).

As for the existence of F̄, one seeks some sort of “maximal algebraic extension” of
F and the construction is again based on Zorn’s Lemma. However, manipulating the
collection (hum?) of all algebraic extensions of F is somehow hazardous. So we appeal
to the following device: there exists a setΩ such that for every algebraic extension E/F,
the set E is in bijection with a subset of Ω. The basic idea is sketched as follows. write

E �

⋃

n≥1
En , En :� {u ∈ E : [F(u) : F] � n}.

For every n, the map that associates u ∈ En with its minimal polynomial over F is
at most n-to-1, so everything boils down to bound the cardinaltiy of F[X] �

⋃
n≥1{P :

deg P � n}.
Now we consider the nonempty partially ordered set formed by algebraic exten-

sions E/F, where E ⊂ Ω set-theoretically, and ≤ is de�ned by �eld extension. Again,
Zorn’s Lemma implies the existence of some maximal E/F. If E is not algebraically
closed, we may construct an extension E′/E with∞ > [E′ : E] > 1 by Lemma 1.2.2. The
set E′ being algebraic over E, thus over F by Exercise 1.2.6, it can be re-embedded into
Ω; this would violate the maximality of E. �

See [16, p.231] for another famous proof due to E. Artin. It also relies on Zorn’s
Lemma, however.

Lemma 1.3.5. Let K/F be an algebraic extension, then every F-embedding ι : K → K is an
F-automorphism.

Proof. Let v ∈ K and denote its minimal polynomial over F by P. Enumerate the roots
of P inside K as v � v1, . . . , vn and set K0 :� F(v1, . . . , vm), which is �nite over F. It
follows that ι induces an F-embedding K0 → K0, which must be an F-automorphism
for dimensional reasons. As v is arbitrary, the surjectivity follows at once. �



9

1.4 Splitting �elds and normality
De�nition 1.4.1. An algebraic extension E/F is called normal if every irreducible poly-
nomial in F[X] splits into linear factors whenever it has a root in E.

Exercise 1.4.2. Let p be a prime number and a ∈ �≥1 which is not a p-th power. Show
that �(a

1
p ) is not a normal extension of �.

De�nition 1.4.3. Let P ∈ F[X]. An extension E/F is called a splitting �eld for P if there
exists n � deg P roots u1, . . . , un ∈ E of P, and that E � F(u1, . . . , un).

More generally, let {Pi : i ∈ I} be a family of polynomials in F[X]. An extension
E/F is called a splitting �eld thereof if each Pi splits into linear factors over E and E is
generated by the roots of all the Pi (i ∈ I) over F.

For the study of splitting �elds and normality, it is often convenient to choose an
algebraic closure F̄/F. Note that the splitting �eld inside F̄ of a family of polynomials
in F[X] is truly canonical: simply add to F the roots of these polynomials in F̄. It is
actually the compositum inside F̄ of the splitting �elds of each Pi .

Lemma 1.4.4. Splitting �elds for a family (Pi)i∈I exist and is unique up to F-isomorphisms.

Proof. To prove the existence, we �x F̄/F and take the subextension of F̄/F generated
by the roots of every Pi , as mentioned above.

To show the uniqueness, let E/F and E′/F be two splitting �elds for (Pi)i∈I . Take
algebraic closures Ē/F and Ē′/F; note that they are also algebraic closures of F. Hence
there exists an F-isomorphism σ : Ē

∼→ Ē′ by Theorem 1.3.4. The image σ(E) is still
a splitting �eld of (Pi)i∈I sitting inside F̄′ — such argument is known as transport of
structure. Therefore we have σ(E) � E′ by the previous discussion about splitting �elds
inside an algebraic closure, and σ : E

∼→ E′ is the required F-isomorphism.
�

Proposition 1.4.5. Let E/F be an algebraic extension, and choose an algebraic closure F̄ of E.
The following are equivalent.

(i) E/F is normal.

(ii) Every F-embedding ι of E into F̄ satis�es ι(E) � E, thus induces an F-automorphism of
E.

(iii) E is the splitting �eld inside F̄ of a family of polynomials in F[X].

Proof. (i) ⇐⇒ (ii): Assume (i). Given an F-embedding ι : E → F̄, for any u ∈ E
with minimal polynomial P ∈ F[X], we see that ι(u) is still a root of P since P has
coe�cients in F. By assumption, P splits into linear factors over E, hence ι(u) ∈ E
and we conclude by Lemma 1.3.5 since u is arbitrary. Conversely, assume (ii) and let
P ∈ F[X] be irreducible with a root u ∈ E. For any root v ∈ F̄ of P, Lemma 1.3.2
furnishes an F-embedding E → F̄ mapping u to v, therefore v ∈ E as well. It follows
that P splits into linear factors over E. The case of reducible P follows at once.

(ii) �⇒ (iii): We contend that E is the splitting �eld (in F̄) of the family {Pu : u ∈
E}, where Pu ∈ F[X] is the minimal polynomial of u. The inclusion E ⊂ K is clear.
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Conversely, the splitting �eld of Pu lies in E for every u ∈ E since we have seen that (ii)
implies (i).

(iii) �⇒ (ii): Suppose that E is the splitting �eld of {Pi :∈ I} inside F̄. Let ι : E → F̄ be
an F-embedding, it su�ces to show that ι induces an F-automorphism of the splitting
�eld of each Pi . This is clear since ι permutes the roots of Pi . �



LECTURE 2

SEPARABILITY AND FINITE GALOIS
EXTENSIONS

2.1 Separability
We always �x a ground �eld F. If E, E′ are two extensions of F, we denote by HomF (E, E′)
the set of F-embeddings E → E′. Similarly, we de�ne the group of F-automorphisms
AutF (E), etc.

Consider a �nite extension F(u)/F generated by a single element u, and let L/F be
an algebraic extension in which P, the minimal polynomial of u over F, splits into linear
factors. Recall that we have established the bijection

HomF (F(u), L)
∼−→ {v ∈ L : P(v) � 0}

ϕ 7−→ ϕ(u).

In particular, |HomF (F(u), L) | ≤ deg P. Strict inequality can hold when the character-
istic p :� char(F) is positive. This leads to the notion of separability.

De�nition 2.1.1. Let P ∈ F[X], P(X) �
∑n

k�0 akXk . De�ne its derivative formally as

P′(X) :�
n∑

k�1
kakXk−1 ∈ F[X].

The rules (P + Q)′ � P′ + Q′, (PQ)′ � PQ′ + P′Q and (cP)′ � cP′, c′ � 0 (for c ∈ F) still
hold.

For P,Q ∈ F[X], we have the notion of their greatest common divisor (P,Q); it is
unique only up to F[X]× � F×. To obtain uniqueness, one may normalize (P,Q) to be a
monic polynomial whenever (P,Q) , 0. Also note that (P, 0) � P.

Lemma 2.1.2. Let L/F be an extension in which P ∈ F[X] splits into linear factors. Then P
has multiple roots in L if and only if (P, P′) , 1. When P is irreducible, the latter condition
holds if and only if P′ � 0.

11
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Notice that the criterion (P, P′) , 1 can be checked inside the ground �eld F, say by
the Euclidean division procedure.

Proof. Write P ∈ L[X] as
∏n

k�1(X − ak) with a1, . . . , an ∈ L being the roots. A straight-
forward manipulation gives the �rst assertion. When P is irreducible, (P, P′) , 1 �⇒
P |P′ �⇒ P′ � 0 since deg P′ < deg P. �

De�nition 2.1.3. A polynomial P ∈ F[X] is called separable if it has no multiple roots,
i.e. (P, P′) � 1.

We turn to the study of irreducible polynomials P(X) �
∑

k akXk with P′ � 0. This
is equivalent to kak � 0 for all k ≥ 1. When char(F) � 0, the only candidates are the
constant polynomials. Assume hereafter that

p :� char(F) is a prime number.

Then the polynomials P with P′ � 0 take the form

P(X) �
∑

k≥0
p |k

akXk .

Write P � P1(Xp) by taking P1(X) �
∑

p |k akXk/p . If P′1 � 0, the procedure can be
iterated so that eventually

P(X) � P♭ (Xpm
), P♭ ∈ F[X], (P♭)′ , 0.(2.1)

for some m ∈ �≥0. Note that P♭ is irreducible since P is. Fix an algebraic closure F̄/F.
It turns out that

{α ∈ F̄ : P(α) � 0} � {βp−m : P♭ (β) � 0},(2.2)

where βp−m is the pm-th root of β in F̄. In fact, we have

Xpm − β �

(
X − βp−m )pm

over F̄; this is because p · 1 � 0 in F̄ and the binomial coe�cient
(x

y
)
�

x!
(x−y)!y! satis�es

p |
(
p
a

)
, 0 < a < p ,

hence

(u + v)p
� up + vp holds true in any extension of F.(2.3)

If the roots in (2.2) are to be counted with multiplicities, each βp−m should appear pm

times. Summing up, the study of an inseparable irreducible P breaks into two stages:
(i) the study of P♭, which is irreducible separable, and (ii) the study of “purely insepa-
rable” polynomials of the form Xpm − b.
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Exercise 2.1.4. The study of purely inseparable polynomials can be further reduced to
the case b < Fp . Under this assumption, show that the polynomial Xpm−b is irreducible.
Use this to produce examples of inseparable �eld extensions.

Now we revert to the case of general characteristic and resume the study of embed-
dings.

De�nition 2.1.5. Let E/F be an algebraic extension, de�ne its separable degree as [E :
F]s :� |HomF (E, F̄) |. This is independent of the choice of the algebraic closure F̄/F.

Lemma 2.1.6 (Tower property). For a tower L/E/F of algebraic extensions, we have [L : F]s �

[L : E]s[E : F]s as cardinal numbers.

Proof. Extending the inclusion F ֒→ F̄ to τ : L → F̄ is equivalent to (i) extending it
to various σ : E → F̄, and then (ii) extending each E

σ−→ σ(E) ֒→ F̄ to τ : L → F̄.
There are [E : F]s choices for the �rst step. As regards the second step, since [L : E]s is
independent of the choice of the embedding of E into F̄ � Ē, there are [L : E]s choices
for each σ. �

De�nition-Proposition 2.1.7. Let E/F be a �nite extension, then [E : F]s ��[E : F]. Call
E/F a separable extension if [E : F]s � [E : F].

Proof. Choose u1, . . . , un so that E � F(u1, . . . , un). Using the tower

E � F(u1, . . . , un) ⊃ F(u1, . . . , un−1) ⊃ · · · ⊃ F(u1) ⊃ F(2.4)

and the tower properties of [E : F]s and [E : F], we reduce immediately to the case E �

F(u). Let P ∈ F[X] be the minimal polynomial of u, and express it as P(X) � P♭ (Xpm ) as
in the earlier discussions, where P♭ is separable. It follows that deg P � [F(u) : F] equals
[E : F]s � deg P♭ (which is the number of distinct roots of P) times [E : F]i :� pm . �

We have just used the observation that F(u)/F is separable if and only if u has sep-
arable minimal polynomial. In this case we say u is a separable element. If u ∈ E is
separable over F, then u is separable over any intermediate �eld between E and F —
indeed, if a polynomial has no multiple roots, then the same holds for its factors.

Lemma 2.1.8. A �nite extension E/F is separable if and only if every u ∈ E is separable.

Proof. Consider the tower (2.4). If every ui has separable minimal polynomial over F
(hence over any intermediate �eld), the tower properties will give [E : F]s � [E : F].
Conversely, we may realize any given u ∈ E as the u1 in (2.4). The tower property, the
hypothesis [E : F]s � [E : F] together with the bounds [· · · ]s ≤ [· · · ] imply [F(u1) :
F]s � [F(u1) : F], whence the separability of u � u1. �

Hence we may extend the notion of separability to arbitrary algebraic extensions as
follows.

De�nition 2.1.9. An algebraic extension E/F is called separable if every element in E
is separable over F.

Exercise 2.1.10. If L/E and E/F are separable, then so is L/F.
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Exercise 2.1.11. Suppose E is generated by a family {ui : i ∈ I} over F, show that E/F is
separable if each ui is. Hence a compositum of separable extensions is still separable.

We say a �eld L is separably closed if any separable irreducible polynomial has a root
in L. As in the case of algebraic extensions, there is a notion of separable closure Fsep/F,
which is a separable extension with Fsep separably closed. Again, we have:

⋆ Existence of Fsep/F: simply take the subextension of F̄/F generated by all sepa-
rable elements, or the compositum of all separable subextensions of F̄/F. In fact,
this is the only choice of a separable closure sitting inside F̄!

⋆ Uniqueness up to F-isomorphisms: let Fsep
1 and Fsep

2 be two separable closures.
Embed them into algebraic closures, say Fsep

i ⊂ F̄i for i � 1, 2. Since there exists an
F-isomorphism τ : F̄1

∼→ F̄2, we reduce immediately to the case that Fsep
1 , Fsep

2 ⊂ F̄,
and it has been observed that Fsep

1 � Fsep
2 in this case.

Proposition 2.1.12. The separable closure Fsep/F is a normal extension.

Proof. We may assume Fsep ⊂ F̄. Then it is the splitting �eld of the family of separable
irreducible polynomials over F. �

2.2 Purely inseparable extensions
In this section we assume p :� char(F) > 0, otherwise everything would be separable.

De�nition 2.2.1. Call an algebraic extension E/F purely inseparable if every element u ∈
E satis�es upm ∈ F for some m.

We use the shorthand E ⊂ F1/p∞ for the last condition de�ning pure inseparability.
It makes perfect sense if E is embedded into an algebraic closure F̄ and F1/p∞ is taken
to be

⋃
m {u ∈ F̄ : upm ∈ F}, which forms a sub�eld by (2.3).

Note that [E : F]s � 1 if E is purely inseparable, since we have observed that a poly-
nomial of the form Xpm − b has only one root in F̄. The assertions below are immediate.

Exercise 2.2.2. If L/E and E/F are purely inseparable, then so is L/F. A compositum of
purely inseparable extensions of F is still purely inseparable.

For a �nite extension E/F, we set the inseparable degree to be

[E : F]i :� [E : F]/[E : F]s .

It is an integer by De�nition-Proposition 2.1.7. Since the degree and separable degree
both satisfy tower property (Lemma 2.1.6), so do the inseparable degree for �nite ex-
tensions: we have [L : F]i � [L : E]i[E : F]i].

Proposition 2.2.3. Suppose E/F is an algebraic extension with p :� char(F) > 0. Let Es be
the maximal separable subextension, which makes sense by the preceding exercises. Then E/Es
is purely inseparable. When E/F is �nite, we have [E : F]s � [Es : F] and [E : F]i � [E : Es].



15

Proof. Let u ∈ E. By (2.1), there exists m ≥ 0 such that upm has a separable minimal
polynomial P♭ ∈ F[X], thus u ∈ (Es )1/p∞ ∩ E. We conclude that E/Es is purely insepa-
rable. The rest follows readily by tower properties. �

Exercise 2.2.4. A �eld is called perfect if every algebraic extension of F is separable.
Show that a �eld F with p :� char(F) > 0 is perfect if and only if F � Fp :� {xp : x ∈ F}.

2.3 The primitive element theorem
Theorem 2.3.1 (Steinitz). Let L/F be a �nite extension. There exists an element u ∈ E with
L � F(u) if and only if there are only �nitely many intermediate �elds E (that is, L ⊂ E ⊂ F).

Proof. To begin with, we assume F �nite. Then there are only �nitely many intermediate
�elds between L and F. On the other hand,a well-known fact (eg. [11, Theorem 2.18])
says that the �nite group L× is cyclic; any generator of L× will then generate L as an
extension of F.

Assume F in�nite and L � F(u). For any intermediate �eld E we set PE ∈ E[X] to be
the minimal polynomial of u over E, thus PE |PF; recall that the minimal polynomials
are normalized to have leading coe�cient one. We claim that E � E(c0, . . .) where
c0, . . . are the coe�cients of PE. Indeed, PE is irreducible over E(c0, . . .) ⊂ E, so

[L : E] � deg PE � [L : E(c0, . . .)]

which implies E � E(c0, . . .). It follows that the map

{intermediate �elds} −→ {monic factors of PF in F̄[X]}
E 7−→ PE

is injective. The right-hand side is �nite.
Conversely, if F is in�nite and there are only �nitely many intermediate �elds, we

may choose u ∈ L o� the (�nite) union of proper subextension of L, by using the next
exercise, Then F(u) � L. �

Exercise 2.3.2. Let F be an in�nite �eld, n ≥ 1 and f (X1, . . . ,Xn) ∈ F[X1, . . . ,Xn] be a
nonzero polynomial. Show that there exists (x1, . . . , xn) ∈ Fn with f (x1, . . . , xn) , 0.

Example 2.3.3. Let k be a �eld with characteristic p > 0. Consider the �eld of rational
functions F :� k(X,Y) in two variables. Take x � X1/p and y � Y1/p inside an algebraic
closure F̄, and form the extension F(x , y)/F. Note that
⋆ [F(x , y) : F] � [F(x , y) : F(x)][F(x) : F] � p2, and
⋆ every γ ∈ F(x , y) satis�es γp ∈ F.

Therefore there is no element u ∈ F(x , y) such that F(x , y) � F(u).

Theorem 2.3.4. Let E/F be a separable �nite extension. There exists u ∈ E such that E � F(u).
If F is in�nite and E � F(u1, . . . , un), then u can be taken to be an F-linear combination of
u1, . . . , un .
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Proof. As in the proof of Theorem 2.3.1, we may assume F in�nite. Let us begin with the
case E � F(u , v). Let P,Q ∈ F[X] be the minimal polynomials of u and v, respectively.
We set out to show that for “general” t ∈ F× we have v ∈ F(u + tv), then it follows that
u � (u + tv) − tv ∈ F(u + tv) as well, hence F(u , v) � F(u + tv).

Embed F(u , v) into F̄ and consider the polynomials

P(u + tv − tX),Q(X) ∈ F(u + tv)[X].

Form their greatest common divisor R. Since v is a common root of P(u + tv − tX) and
Q(X) in F̄, we have deg R ≥ 1. We proceed to show that deg R � 1, which will imply
that R(X) � X − v and thus v ∈ F(u + tv) as required.

If deg R > 1, then the fact R |Q and the separability of Q would imply that some
root v′ , v in F̄ is also a root of R. Hence P(u + t(v − v′)) � 0, and

(u − u′) + t(v − v′) � 0, u , u′ : roots of P , v , v′ : roots of Q.(2.5)

in F̄. Since F is in�nite, we can always choose t ∈ F× to rule out (2.5) for any pairs of
roots u , u′ and v , v′. In general, this procedure yields a sequence v1, . . . , vn−1 ∈ L
such that

E � F(u1, . . . , un−2)(un−1, un) � F(u1, . . . , un−2)(v1) � F(u1, . . .)(un−2, v1)
� F(u1, . . . , un−3)(v2) � · · · � F(vn−1)

and vn−1 is an F-linear combination of u1, . . . , un , as required. �

This result can also be deduced from Theorem 2.3.1 by taking the Galois closure
(De�nition 2.4.3) of E and appeal to results in Galois theory, namely the Lemma 2.4.5.

2.4 Galois extensions and Galois groups
Let E/F be an extension, we write AutF (E) for the group of F-automorphisms, the bi-
nary operation being the composition of automorphisms (σ, τ) 7→ σ ◦ τ. We shall write
Aut(E) for the group of all �eld automorphisms of E; it equals Autk(E) where k stands
for the prime �eld of E, so this is actually a special case.

The relation called “transport of structure” (after N. Bourbaki)

Autσ(K) (E) � σAutK (E)σ−1, σ ∈ AutF (E)(2.6)

holds true for any intermediate �eld E ⊃ K ⊃ F.
There are two basic operations.

1. To any subgroup H of AutF (E) we attach the corresponding �xed �eld

EH :� {α ∈ E : ∀τ ∈ H, τ(α) � α}.
Obviously EΓ is a subextension of E/F.

2. To any subextension K/F of E we attach the subgroup AutK (E) of AutF (E).
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There operations satisfy

(2.7)
H1 ⊂ H2 �⇒ EH1 ⊃ EH2 ,

K1 ⊂ K2 �⇒ AutK1 (E) ⊃ AutK2 (E).

De�nition 2.4.1. By a Galois extension of F we mean a normal and separable algebraic
extension. The Galois group of a Galois extension E/F is Gal(E/F) :� AutF (E).

Figure 2.1: Fragments of É. Galois’ First Memoir. Source: [20, IV.1].

Exercise 2.4.2. Show the following properties.
(i) Consider the tower L ⊃ E ⊃ F. If L/F is Galois, then so is L/E.

(ii) If L/F is Galois and E/F is normal, then E/F is Galois.
(iii) Composita of Galois extensions of F are still Galois.

De�nition 2.4.3. Let E/F be a separable extension. The Galois closure inside some alge-
braic closure F̄ is the smallest Galois extension containing E; it is given by the composi-
tum of σ(E), σ ∈ HomF (E, F̄).

Fix an algebraic closure F̄/F, then the normality implies that Gal(E/F) equals the
set HomF (E, F̄), and separability implies that the latter set has cardinality [E : F] when
E/F is �nite. Hence

|Gal(E/F) | � [E : F] for �nite extensions.(2.8)
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Remark 2.4.4. In Galois’ original de�nition, he only considered the splitting �elds of a
single polynomial, and the Galois group was in terms of permutations of roots. The
interpretation via automorphisms was later conceived by Dedekind and appeared in
Weber’s work Lehrbuch der Algebra (1895).

Lemma 2.4.5. Let E/F be a Galois extension, then EGal(E/F) � F. Furthermore, the map that
sends an intermediate �eld K to the subgroup Gal(E/K) of Gal(E/F) is an injection.

Proof. Evidently F ⊂ EGal(E/F). For any u ∈ EGal(E/F), denote its minimal polynomial by
P ∈ F[X], which must be separable. If v ∈ F̄ (a chosen algebraic closure) is a root of P,
we have seen that there is an F-embedding F(u) → F̄ mapping u to v; it extends to an
element σ of Gal(E/F) � AutF (E). By assumption v � σ(u) � u. Therefore deg P � 1
and u ∈ F.

Since for any intermediate �eld K, we have seen that E/K is Galois and K � EGal(E/K),
the second assertion follows immediately. �

Notice that the map K 7→ Gal(E/K) is not surjective in general for in�nite Galois
extensions.

Lemma 2.4.6 (E. Artin). Let E be a �eld and H ⊂ Aut(E) is a �nite subgroup. Then E/EH is
a Galois extension of degree |H |, with Galois group Gal(EH/E) � H.

Proof. Let u ∈ E and consider the �nite H-orbit O :� {τ(u) : τ ∈ H} (without multi-
plicities) in E. Let Pu (X) :�

∏
α∈O (X − α) ∈ E[X]. Notice that Aut(E) acts on the ring

E[X] by acting on the coe�cients of polynomials. Thus Pu is H-�xed so Pu ∈ EH[X];
moreover Pu is separable of degree � |O | ≤ |H |. It is clear that

H ⊂ Gal(E/EH ).(2.9)

Next, we claim that [E : EH] ≤ |H |. Indeed, pick any u ∈ E with largest possible
[EH (u) : EH] (bounded by |H |). We must have E � EH (u), otherwise there exists v ∈ E
with a tower EH (u , v) ) EH (u) ⊃ EH . By Theorem 2.3.4 we have EH (u , v) � EH (w) for
some w ∈ E, which contradicts the maximality of [EH (u) : EH]. All in all, E/EH is �nite
and

[E : EH] ≤ |H | ≤
(2.9)
|Gal(E/EH ) | �

(2.8)
[E : EH].

Therefore equalities hold everywhere, and we conclude Gal(E/EH ) � H. �

Remark 2.4.7. The upshot of the proof is [E : EH] ≤ |H |; a slick proof due to Artin is also
prevalent, cf. [11, p.236, Lemma 2].

Theorem 2.4.8 (Galois correspondence for �nite extensions). Let E/F be a �nite Galois
extension.

(i) There are mutually inverse bijections
{
intermediate �elds

} 1:1←→ {
subgroups of Gal(E/F)

}

[E ⊃ K ⊃ F] 7−→ Gal(E/K)

EH ←−[ [H ⊂ Gal(E/F)],

which are order-reversing in the sense of (2.7).
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(ii) For any intermediate �eld K and σ ∈ Gal(E/F), we have

Gal(E/σ(K)) � σGal(E/K)σ−1;

the extension K/F is Galois if and only if Gal(E/K) ⊳ Gal(E/F) (“⊳” = be normal sub-
group of...)

(iii) Furthermore, we have a bijection

Gal(E/F)/Gal(E/K)
∼→ HomF (K, E)

σ · Gal(E/K) 7→ σ |K

between pointed sets. It induces a group isomorphism Gal(E/F)/Gal(E/K)
∼→ Gal(K/F)

when K/F is Galois.

Proof. Thanks to Lemma 2.4.5 and 2.4.6, the maps in (i) above are mutually inverse.
Let K be an intermediate �eld between E and F. The assertion Gal(E/σ(K)) �

σGal(E/K)σ−1 is a special case of (2.6). Also note that K/F is separable, and

[K/F is normal] ⇐⇒ [∀σ ∈ Gal(E/F) � HomF (E, F̄), σ(K) � K]

⇐⇒

∀σ ∈ Gal(E/F),

Gal(E/σ(K)) � σGal(E/K)σ−1 � Gal(E/K)

 ,
in which the last equivalence follows from the aforementioned Galois correspondence,
whence (ii).

As regards (iii), consider the map Gal(E/F) ∋ σ 7→ σ |K . It surjects onto HomF (K, E)
since every F-embedding K → E extends to E → E by the normality of E/F. One
readily checks that σ |K � τ |K if and only if (τ−1σ) |K � id, which is equivalent to
σGal(E/K) � τGal(E/K). For normal extensions K/F, we obtain a group isomorphism
onto HomF (K, E) � Gal(K/F). �

Proposition 2.4.9. Consider the diagram of �eld extensions

EK

E K

F
Galois arbitrary

inside some ambient �eld, say F̄. Then EK/K is Galois as well, and the restriction map σ 7→ σ |E
de�nes a group isomorphism Gal(EK/K)

∼→ Gal(E/E ∩ K) ⊂ Gal(E/F).

Proof. Since E is generated by separable elements over F, so is EK over K (see the re-
marks after De�nition-Proposition 2.1.7). Similarly, E is the splitting �eld a family of
polynomials (Pi ∈ F[X])i∈I , hence so is EK for the family (Pi ∈ K[X])i∈I . This entails
that EK/K is a Galois extension. The restriction-to-E map Gal(EK/K) → Gal(E/E ∩ K)
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is a well-de�ned group homomorphism. Observe that if σ ∈ Gal(EK/K) satis�es σ |E �

idE, then σ(γ) � γ for every γ ∈ EK since γ must be of the form

γ �
x1 y1 + · · · + xn yn

x′1 y′1 + · · · x′n y′n
, xi , x′i ∈ E, yi , y′i ∈ K.

The injectivity follows at once.
Let us show the surjectivity. We assume [E : F] �nite in what follows. The idea is

to show that the �xed �eld of H :� im [Gal(EK/K) → Gal(E/F)] is precisely E ∩ K; it
will then follow that H � Gal(E/E ∩ K) by Theorem 2.4.8. Let u ∈ EH , then u regarded
as an element of EK is �xed by Gal(EK/K), hence u ∈ K by Lemma 2.4.5. The reverse
inclusion EH ⊃ E ∩ K has already been observed. This completes the proof for �nite
E/F. �

Note that the �niteness intervenes only in the application of Theorem 2.4.8. For
general Galois extensions E/F, one appeals to the easy observation that H is a closed in
the Hausdor� space Gal(E/F) under the Krull topology, since it is the continuous image
of the compact group Gal(EK/K). The Galois correspondence continues to hold under
this set-up. These stu�s will be introduced in our discussion on in�nite Galois theory.

Exercise 2.4.10 (Cf. [16, VI. Theorem 1.14]). Let E, E′ be Galois extensions of F inside
some ambient �eld. Then EE′/F is Galois and the map

Gal(EE′/F) −→ Gal(E/F) ×Gal(E′/F)
σ 7−→ (σ |E , σ |E′)

de�nes an injective homomorphism between groups. Moreover, it is an isomorphism
if E ∩ E′ � F. Hint: for the surjectivity, show that Gal(E/F) × {1} and {1} × Gal(E′/F) are
both contained in the image by invoking Proposition 2.4.9.

Example 2.4.11. Let ω ∈ �, ω3 � 1 and ω , 1. Consider the �eld extension�( 3√2, ω)/�.
It is surely separable since we are in characteristic zero, normal since it is the splitting
�eld of the irreducible polynomial X3 − 2 ∈ �[X]. Note that the sub�eld �(ω) is also
Galois over �: it is the splitting �eld of X2 + X + 1 . Hence we have a tower of �eld
extensions

�( 3√2, ω)

�(ω)

�

Galois

Galois, degree 2

We begin by determining G :� Gal(�( 3√2, ω)/�). Tower property gives

[�( 3√2, ω) : �)] � [�( 3√2, ω) : �( 3√2))][�( 3√2) : �] � 3[�( 3√2, ω) : �( 3√2))].

The degree [�( 3√2, ω) : �( 3√2))] equals either 2 or 1; if it equals 1, then ω ∈ �( 3√2),
which is impossible since [�( 3√2 : �] � 3 whereas [�(ω) : �] � 2. We conclude that
|G | � [�( 3√2, ω) : �] � 6.
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Any σ ∈ G must send ω to ω±1, and send 3√2 to ωk 3√2 for some k � 0, 1, 2. There
are jointly 2 · 3 possibilities of σ, which exhaust G since |G | � 6. It follows that G is
generated by the normal subgroup Gal(�( 3√2, ω)/�(ω)) ≃ �/3� given by

ω 7→ ω,
3√2 7→ ωk 3√2, k � 0, 1, 2

together with the subgroup Gal(�( 3√2,�( 3√2)) ≃ �/2�

ω 7→ ω±1,
3√2 7→ 3√2.

By taking semi-direct products, it is easy to check G must be isomorphic to the
dihedral group D6, or equivalently with the permutation groupS3. By the Galois cor-
respondence, the intermediate �elds are:

�( 3√2, ω),�,
�(ω) : the only Galois subextension over �,

�( 3√2),�(ω 3√2),�(ω 3√2) : conjugate under the subgroup 3√2 7→ ωk 3√2.
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LECTURE 3

SUPPLEMENTS ON GALOIS THEORY

Notation: for a subset E of some group, 〈E〉 will stand for the subgroup generated by E.
When E � {x , y , . . .} we abbreviate 〈E〉 as 〈x , y , . . .〉.

3.1 In�nite Galois extensions
Let E/F be a Galois extension. So far we have seen that
⋆ K/F 7→ Gal(E/K) satis�es EGal(E/K) � K, thus is an injection from intermediate

�elds to the subgroups of Gal(E/F);
⋆ it is a surjection when E/F is �nite;
⋆ Gal(E/K) is normal if and only if K/F is Galois (the same arguments as in the

�nite case).
It is highly desirable to develop a full-�edged theory as in the �nite case. For exam-

ple, it is of utmost importance to understand the absolute Galois group ΓF :� Gal(Fsep/F)
together with its subgroups of the form Gal(Fsep/K). As a special case, the algebraic
number theory is largely the study of Gal(�̄/�), whose structure remains a mystery so
far.

The key insight here is that every element u in E lies in some �nite Galois subexten-
sion K/F. Therefore, the action of Gal(E/F) on u can be reduced to that of Gal(K/F) for
various K. A convenient formulation of this idea is to introduce a topology on Gal(L/F)
as follows.

De�nition 3.1.1 (Krull topology). Equip Gal(E/F) with the topology such that the nor-
mal subgroups

Gal(E/K), K/F : �nite Galois subextension

form a local base at 1 ∈ Gal(E/F), and that Gal(E/F) be comes a topological group.

Being a topological group means that the operations of multiplication and taking
inverse are both continuous. Thus we obtain the local bases (gGal(E/K))K/F at each
g ∈ Gal(E/F). The Krull topology may be understood as:

23
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σ and τ in Gal(E/F) are “close to each other”, if

σ |K � τ |K for “large” �nite Galois subextension K/F.

The restriction maps σ 7→ σ |K induces a group homomorphism

Gal(E/F) −→
∏

E⊃K⊃F
[K:F]<∞

Gal(K/F).

It is injective by our earlier key insight (sic). Moreover, if we equip the right-hand side
with the product topology, where each Gal(K/F) is endowed with its discrete topology,
then the induced topology on Gal(E/F) is nothing but the Krull topology — check this!
When E/F is �nite, this yields the discrete topology on Gal(E/F).

Lemma 3.1.2. The embedding above realizes Gal(E/F) as a closed subgroup of
∏

E⊃K⊃F
[K:F]<∞

Gal(K/F).

Proof. The image of Gal(E/F) is characterized as
{
σ � (σK ∈ Gal(K/F))K : K1 ⊃ K �⇒ σK1 |K � σK

}
.

Therefore it is de�ned by a family of equations of the form f (σ) � g(σ), where f , g are
continuous maps emanating from

∏
K Gal(K/F). Since

∏
K Gal(K/F) is Hausdor�, the

image of Gal(E/F) must be closed. �

Remark 3.1.3. In high-tech terms, this means that Gal(E/F) can be identi�ed with the
projective limit lim←−−K

Gal(K/F).

Lemma 3.1.4. For any �nite subextension K/F with K ⊂ E, the subgroup Gal(E/K) is open.

Proof. Firstly we notice that for every α ∈ E, the stabilizer Stab(α) :� {σ ∈ Gal(E/F) :
σ(α) � α} is open. Indeed, α lies in some �nite Galois extension K′/F with K′ ⊂ E,
therefore Stab(α) ⊃ Gal(E/K′). Writing Stab(σ) as a union of cosets of Gal(E/K′), each
of whom is open, we deduce the openness of Stab(α).

Next, write K � F(α1, . . . , αn). We have Gal(E/K) �
⋂n

i�1 Stab(αi), whence the
openness of Gal(E/K). �

Lemma 3.1.5. The topological group G :� Gal(E/F) satis�es the following properties.
(i) G is compact and Hausdor�.
(ii) Every open subgroup is closed of �nite index.
(iii) G is totally disconnected.
(iv) For any intermediate �eld K, the subgroup Gal(E/K) is closed; it is open if and only if

K/F is �nite.

Proof. Embed G into
∏

E⊃K⊃F
[K:F]<∞

Gal(K/F). The right-hand side is compact and Hausdor�

since each Gal(K/F) is (Tychono�’s theorem), this proves (i).
To prove (ii), let H be an open subgroup of G. Decompose GrH into

⋃
g<H gH. Since

each gH is a translate of H, thus open, we see that G rH is open as well. Furthermore,
these open cosets cover the closed subset GrH, which is compact since G is, hence we
may extract a �nite subcover. The �niteness follows immediately.
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The assertion (iii) follows since G has a local base at 1 consisting of open and closed
subsets — please consult your local topologist.

As to (iv), note that Gal(E/K) �
⋂

K′ Gal(E/K′) where K′/F ranges over the �nite
subextensions of K, thus Gal(E/K) is closed by (ii) and Lemma 3.1.4. When K/F is �-
nite, Gal(E/K) is open by de�nition. Conversely, openness of Gal(E/K) implies the
�niteness of Gal(E/F)/Gal(E/K) by (ii); the latter is known to be in bijection with
HomF (K, E). It remains to remark that HomF (K, E) is �nite if and only if K/F is �-
nite. �

Theorem 3.1.6 (The Galois correspondence). For any Galois extension L/F, the assign-
ments

{
intermediate �elds

} 1:1←→ {closed subgroups of Gal(E/F)}
[E ⊃ K ⊃ F] 7−→ Gal(E/K)

EH ←−[ H

are mutually inverse, order-reversing bijections. The open subgroups correspond to �nite exten-
sions.

Proof. In view of the preceding discussions, the bulk of the proof is to show that, for
every closed subgroup H ⊂ Gal(E/F) we have

H � Gal(E/EH ).

The inclusion H ⊂ Gal(E/EH ) is evident. Conversely, let σ ∈ Gal(E/EH ). For any
�nite Galois subextension K/F, we may restrict everything to K and obtain the images
H̄ ⊂ Gal(K/F) and σ̄ ∈ Gal(K/KH̄ ). The Galois correspondence for K/F implies σ̄ ∈ H̄,
or: σ is “close to” some element in H. Varying K/F, we conclude that σ ∈ H since H is
closed. �

3.2 Linear independence of characters
Let (G, ·) be a monoid, that is, a set with an associative multiplication law • that has a
unit 1, but not necessarily with inverses. Let E be a �eld. By a character of G with values
in E, we mean a map χ : G → E with
⋆ χ(gh) � χ(g)χ(h) for all g , h ∈ G,
⋆ χ(1) � 1.

Theorem 3.2.1 (E. Artin). Let G be a monoid and E be a �eld. Let (χi)i∈I be a family of distinct
characters of G with values in E. Then (χi)i∈I is linearly independent in the following sense: if

∑

i∈I

aiχi (·) � 0, (�nite sum), ai ∈ E,

then ai � 0 for each i ∈ I.



26

Proof. Suppose that
∑

i∈I aiχi (·) � 0 as above. Let J :� {i ∈ I : ai , 0}. Assume | J | ≥ 2.
Let j, j′ be distinct elements of J and choose g ∈ G such that χ j (g) , χ j′ (g). Then

∑

i∈ J

aiχi (g)χi (·) �
∑

i∈ J

aiχi (g ·) � 0,

∑

i∈ J

aiχ j (g)χi (·) � χ j (g)
∑

i∈ J

aiχi (·) � 0.

Subtraction gives a new linear relation between χi with fewer nonzero coe�cients,
whereas the coe�cient of χ j′ is a j′ (χ j′ (g) − χ j (g)) , 0. This procedure eventually
leads us to the case | J | � 1, which is clearly impossible. �

This result will be applied to the case G � (E, ·), in which case the set Aut(E) fur-
nishes characters.

N.B. Do not confuse with the linear independence of the characters of group repre-
sentations, which we will encounter later in this course.

3.3 Norm and trace
Let E/F be any �nite extension.

De�nition 3.3.1. For any α ∈ E, let mα : E → E be the F-linear map de�ned by mα (x) �
xα. Set

NE/F (α) :� det(mα)
TrE/F (α) :� Tr(mα),

called the norm and trace of α, respectively. They take values in F.

We begin with some easy observations:

⋆ NE/F (αβ) � NE/F (α)NE/F (β) (multiplicativity);

⋆ TrE/F (α + β) � TrE/F (α) + TrE/F (β) (additivity);

⋆ α ∈ F implies NE/F (α) � α[E:F] and TrE/F (α) � [E : F]TrE/F (α);

Lemma 3.3.2 (Transitivity). Let L/E and E/F be �nite extensions, then

NE/F ◦NL/E � NL/F , TrE/F ◦ TrL/E � TrL/F .

Proof. We shall prove a more general statement: let V be a �nite-dimensional E-vector
space and T : V → V be an E-linear endomorphism, then T is F-linear as well. Write
detE (T), TrE (T) to denote its determinant and trace as an E-linear map. Idem for
detF (T), TrF (T). We contend that

NF (T) � NE/F (det
E

(T)), TrF (T) � TrE/F (TrE (T)).

Let n � dimE V . Fix a basis of V over E and identify T with a n × n matrix over
E. The assertions are trivially true when n � 0, 1. Firstly, consider the case for detF for
general n. By the elementary row and column permutations, we may express T as a
product of matrices (over E) of the form
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(i) upper or lower triangular matrices with diagonal elements � 1;
(ii) diagonal matrices;

(iii) row (resp. column) transposition matrices: that is, the matrix obtained from In by
exchanging the i-th and j-th rows (resp. columns), for some 1 ≤ i , j ≤ n.

In each case the equality NE/F detE � detF holds. Indeed, for (i), both sides equal 1;
the case (ii) reduces to the case n � 1, whereas both sides of (iii) equal (−1)[E:F] —
this requires some veri�cation. Therefore NE/F detE (T) � detF (T) since both sides are
multiplicative in T.

Now consider the case for TrF. Since TrF and TrE/FTrE are both additive, we readily
reduce to the case where T has only one nonzero entry. If the entry lies o� the diagonal,
both TrF (T) and TrE (T) vanish; otherwise we reduce to the case n � 1. �

Proposition 3.3.3. Consider a �nite extension of the form F(α)/F. Write the minimal polyno-
mial of α as P(X) � Xn + an−1Xn−1 + · · · + a0, then

NF(α)/F (α) � (−1)na0, TrF(α)/F (α) � −an−1.

Proof. This is essentially linear algebra, namely the theory of rational canonical forms.
Since α · αn−1 � −∑n−1

k�0 akαk , the endomorphism mα is represented by the matrix

*........,

0 · · · 0 −a0

1 −a1
. . .

1 −an−1

+////////-
under the F-basis 1, α, · · · αn−1 for F(α). Its determinant and trace are readily calcu-
lated. �

Remark 3.3.4. Note that (−1)n a0 and −a1 are the product and sum of roots of P, respec-
tively; here the roots are counted with multiplicities.

Proposition 3.3.5. Let E/F be a �nite extension. For any α ∈ E we have

NE/F (α) �
∏

σ∈HomF (E,F̄)

σ(α)[E:F]i ,

TrE/F (α) � [E : F]i

∑

σ∈HomF (E,F̄)

σ(α)

for any choice of algebraic closure F̄. Here [E : F]i stands for the inseparable degree.

Proof. Consider the case of NE/F �rst. Let P ∈ F[X] be the minimal polynomial of α. By
Lemma 3.3.2 and Remark 3.3.4, we have

NE/F (α) � NF(α)/FNE/F(α) (α) � NF(α)/F (α)[E:F(α)]

�

∏

ν∈F̄, P(ν)�0
with multiplicities

ν[E:F(α)]
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Recall that the roots of P are in bijection with HomF (F(α), F̄): to each embedding σ
we associate ν :� σ(α). Also, in our derivation of the identity P(X) � P♭ (Xpm ) with
(P♭)′ , 0 in the previous Lecture (say in the case of characteristic p > 0, otherwise we
always have multiplicity one), we have seen that each root ν � σ(α) of P has multiplicity
with pm � [F(α) : F]i . Therefore the last term above equals

∏

σ∈HomF (F(α),F̄)

σ(α)[F(α):F]i[E:F(α)].(3.1)

Consider the restriction map HomF (E, F̄) → HomF (F(α), F̄). By the much-used
property that every F-embedding F(α) → F̄ extends to E → F̄, the map is surjective.
Moreover, the �ber over each σ : F(α) → F̄ has cardinality [E : F(α)]s : indeed, this is
exactly how the separable degree was de�ned! Writing

[E : F(α)] � [E : F(α)]s[E : F(α)]i

and using the tower property of inseparable degrees, we infer that (3.1) equals
∏

σ∈HomF (F(α),F̄)

σ(α)[E:F(α)]s [E:F(α)]i[F(α):F]i �

∏

σ∈HomF (E,F̄)

σ(α)[E:F]i .

The case for TrE/F is the same: just switch to the additive version of the arguments
above. �

Exercise 3.3.6. Assume char(F) , 2 and E/F is �nite separable. Show that the map

E × E −→ F
(x , y) 7−→ TrE/F (x y)

is a non-degenerate F-quadratic form. It is called the trace form of the �nite extension
E/F. Hint: apply Proposition 3.3.5 and Theorem 3.2.1.

Exercise 3.3.7. Show that TrE/F can be identically zero without the hypothesis of sepa-
rability.

3.4 Finite �elds
Every �nite �eld must have positive characteristic, otherwise it would contain a copy
of �. Let us �x a prime number p in what follows.

Theorem 3.4.1. Every �nite �eld F of characteristic p has cardinality q � pm for some m ≥ 1.
Moreover, there exists a �nite �eld with q elements for every p-power q, which is unique up to
isomorphism.

Nowadays it is standard to write �q for a �nite �eld with q elements. Unless oth-
erwise speci�ed, all the embeddings and isomorphisms below are over the prime �eld
�p :� �/p�.
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Proof. Given q � pm , m ∈ �≥1, let F/�p be the splitting �eld of Xq − X ∈ �p[X]. By the
identity (u + v)q � uq + vq in characteristic p, the roots {x ∈ F : xq � x} form a sub�eld;
it must equal F itself. On the other hand, (Xq −X)′ � −1 , 0, thus it has q distinct roots
in F. We infer that |F | � q.

Conversely, given a �nite �eld F with characteristic p, we must have |F | � q :� pm

where m :� [F : �p]. We claim that F is a splitting �eld of the polynomial Xq − X ∈
�p[X]; the uniqueness of F will follow directly. Indeed, since |F× | � q − 1, every x ∈ F
satis�es xq � x. As Xq−X has exactly q roots in its splitting �eld, F is a splitting �eld of
Xq −X by counting. Note that our arguments imply that F/�p is normal and separable,
hence Galois. �

Theorem 3.4.2. Let E/F be an extension of �nite �elds with characteristic p. Set q :� |F |, then
E/F is a Galois extension and Gal(E/F) is the cyclic group generated by x 7→ xq .

The automorphism x 7→ xq is called the Frobenius automorphism.

Proof. It has been remarked that E/�p is Galois, hence so is E/F. Let n :� [E : F]. Set
σ :� [x 7→ xq]; one readily checks that σ ∈ Gal(E/F). Claim: σ is of order n in Gal(E/F).
If σd � idE for some d | n, then all elements in E are roots of Xqd−X. As observed above,
Xqd−X has qd distinct roots, therefore d � n since |E | � qn . Since E/F is Galois of degree
n, we must have Gal(E/F) � 〈σ〉 by a counting argument. �

Corollary 3.4.3. Let F be a �nite �eld. All algebraic extensions of F are separable.

Fields with this property are called perfect �elds.

Corollary 3.4.4. Let E/F be an extension of �nite �elds. Let q :� |F |, qn :� |E |. For every d |n
there exists a unique intermediate �eld K with [K : F] � d, and every intermediate �eld is so
obtained.

Proof. Apply the Galois correspondence to Gal(E/F) ≃ �/n�. �

Remark 3.4.5. Pick an algebraic closure �̄q of �q . The precedent results show that the
�nite subextensions of �̄q/�q are of the form �qn/�q with
⋆ �qm ⊂ �qn if and only if m |n,
⋆ Gal(�qn/�q) � �/n�.

By Lemma 3.1.2, the absolute Galois group of �q can thus be realized as the additive
group 

(σn ∈ �/n�)n≥1 ∈
∏

n∈�≥1

�/n� : m |n �⇒ σn
mod n�/m�7−−−−−−−−−→ σm


under pointwise addition. In fact, it can be made into a huge ring using the ring struc-
tures on each �/n�, known as the Prüfer ring �̂ � lim←−−n

�/n�. It is canonically isomor-
phic to

∏
ℓ:prime�ℓ , where �ℓ stands for the ring of ℓ-adic integers.

The Frobenius automorphism x 7→ xq may be identi�ed with the family (1+ n�)n ∈
�̂. The Frobenius automorphism generates a copy of � inside �̂, which turns out to be
a dense subgroup; it cannot correspond to any intermediate �eld under Theorem 3.1.6.
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3.5 Abstract Kummer theory
We will follow [19, IV.3] closely. In what follows, we �x a separable closure Fsep/F and
the �elds under consideration are all assumed to sit inside Fsep.
De�nition 3.5.1. Let E/F be a Galois extension. We say that E/F is
⋆ abelian, if Gal(E/F) is an abelian group;

⋆ cyclic, if Gal(E/F) is a cyclic group.
An abelian extension E/F is called of exponent n if Gal(E/F) is a group of exponent n,
i.e. σn � 1 for every σ ∈ Gal(E/F). Subextensions of cyclic (resp. abelian of exponent
n) extensions are still cyclic (resp. abelian of exponent n).
Exercise 3.5.2. Show that compositum of a family abelian extensions of F is again abelian;
it is of exponent n if every Ei/F is. Deduce the notion of the maximal abelian extension
inside Fsep/F. Do the same for abelian extensions of a given exponent n. Hint: the
Galois group of the compositum embeds into

∏
i Gal(Ei/F).

We present a somehow axiomatic framework for Kummer theory as follows. Let
(A, ·) be a abelian group on which the absolute Galois group ΓF :� Gal(Fsep/F) acts; it
is reasonable to set ΓE :� Gal(Fsep/E) for any E/F, since Fsep is also a separable closure
of E.

Denote this action as ΓF × A ∋ (σ, a) 7→ σ(a). More precisely, we require that
⋆ (στ)(a) � σ(τ(a)),
⋆ σ(ab) � σ(a)σ(b),
⋆ 1(a) � a, for all σ, τ ∈ ΓF and a , b ∈ A;
⋆ A �

⋃
E/F

[E:F]<∞
AE where AE :� AΓE is the �xed subgroup.

The last assertion amounts to saying that every element of A has an open stabilizer
under ΓF; therefore ΓF acts continuously on A if A is endowed with discrete topology.
It will justify the use of in�nite Galois correspondence in what follows.

Note that when E/F is Galois, the action of ΓF on AE factors through Gal(E/F) �

ΓF/ΓE. One may check that AGal(L/E)
L � AE. For every L ⊃ E with [L : F] < ∞, we have

the “norm” map (do not confuse with the earlier notion!)

NL/E : AL −→ AE

a 7−→
∏

σ∈ΓE/ΓL

σ(a).

We adopt the convention

(σ + σ′)a :� σ(a)σ′(a), etc.(3.2)

whose usefulness is illustrated in the following arguments.
De�nition 3.5.3 (Tate cohomology at degree −1). Given a �nite Galois extension E/F,
de�ne the group

Ĥ−1(E/F,AE) :� ker
(NE/F

) /
〈(σ − 1)(a) : a ∈ AE , σ ∈ Gal(E/F)〉.

N.B. This awkward notation originates from the theory of Galois cohomology.
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Lemma 3.5.4. When E/F is cyclic, 〈(σ − 1)(a) : a ∈ AE , σ ∈ Gal(E/F)〉 equals (τ − 1)AE
where τ is any generator of Gal(E/F).

Proof. For σ � τk ∈ Gal(E/F), apply the identity (τk − 1)a � (τ− 1)(1 + · · ·+ τk−1)a. �

De�nition 3.5.5. Let ℘ : A→ A be a homomorphism satisfying
(i) ℘ is surjective,

(ii) ℘(σ(a)) � σ(℘(a)) for all σ ∈ ΓF and a ∈ A,
(iii) µ℘ :� ker(℘) ≃ �/n� for some positive integer n, and µ℘ ⊂ AF.

For every subset S ⊂ A, we want to talk about the subextension F(S) “generated”
by S. This can be done via Galois correspondence: F(S) is de�ned as the �xed �eld
of the closed subgroup {σ ∈ ΓF : ∀s ∈ S, σ(s) � s} of ΓF. Therefore S 7→ F(S)
de�nes an order-preserving map from subsets of A to intermediate �elds. Also note
that F(AE) ⊂ E for all E/F.

The core of Kummer theory is the assignment a 7→ χa from AF to Homcont(ΓF , µ℘),
the latter being de�ned as

Homcont(ΓF , µ℘) :�
{
χ ∈ Hom(ΓF , µρ) : factors through some �nite Gal(E/F)

}
�

{
continuous homomorphisms for the Krull topology

}
.

It is an abelian group under pointwise multiplication χχ′ : σ 7→ χ(σ)χ′(σ). Now
construct χa as follows: pick any α ∈ ℘−1(a), we set

χa (σ) :� (σ − 1)(α), γ ∈ ΓF .

Since α ∈ AE for some �nite E/F, we see that χa factors through Gal(E′/F) where E′/F
is the Galois closure of E. Next, ℘((σ − 1)(α)) � (σ − 1)(℘(α)) � 1, thus χa has image
inside µ℘. It is also independent of the choice of α as µ℘ ⊂ AF. The following properties
are easily checked:
⋆ χab (σ) � χa (σ)χb (σ);
⋆ χa (σσ′) � χa (σ)χa (σ′): use the identity σσ′ − 1 � σ(σ′ − 1) + (σ − 1);
⋆ a ∈ ℘(AF) ⇐⇒ α ∈ AF ⇐⇒ χa � 1 (the trivial homomorphism).

Thus we deduce an injective group homomorphism AF/℘(AF) → Homcont(ΓF , µ℘).

Theorem 3.5.6. Given (A, ℘) as above. Assume Ĥ−1(E/F,AE) � {1} for every �nite cyclic
E/F. Then the map

{∆ : ℘(AF) ⊂ ∆ ⊂ AF} −→ {E/F : abelian extensions of exponent n }
∆ 7−→ F(℘−1(∆))

is a bijection. Furthermore, if ∆ 7→ E under this map, then ℘(AE) ∩ AF � ∆ and the group
homomorphism

(3.3)
∆/℘(AF) −→ Homcont(Gal(E/F), µ℘)
a · ℘(AF) 7−→ χa .

is an isomorphism.
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Here the de�nition of Homcont(Gal(E/F), µ℘) is similar to Homcont(ΓF , µ℘). Exten-
sions of the form F(℘−1(∆))/F are called Kummer extensions for the data (A, ℘).

Sketch of the proof. Given ∆ on the left-hand side, put E :� F(℘−1(∆)), the map

Gal(E/F) −→ µ∆℘
σ 7−→ (χa (σ))a∈∆

is a group homomorphism. If χa (σ) � 1 for all a ∈ ∆, then σ �xes every element in
℘−1(∆), therefore σ ∈ Gal(E/F) must be trivial by the de�nition of E � F(℘−1(∆)).
Thus the homomorphism is injective and E/F is abelian of exponent n.

Conversely, given an abelian E/F with exponent n, we put∆ :� ℘(AE)∩AF ⊃ ℘(AF)
as prescribed in the assertions and contend that E � F(℘−1(∆)). Observe that ℘−1(∆) ⊂
AE since µ℘ ⊂ AF, from which we deduce

F(℘−1(∆)) ⊂ F(AE) ⊂ E

by Galois correspondence. To show E ⊃ F(℘−1(∆)), note that E/F is a compositum of its
�nite subextensions. By the structure theory of �nite abelian groups, we see that E/F is
the compositum of �nite cyclic subextensions. Thus it su�ces to show K ⊂ F(℘−1(∆))
for every �nite cyclic subextension K/F.

Observe that K/F is also of exponent n, thus [K : F] | n. Let ζ be a generator of µ℘
and let η :� ζn/[K:F]. Observe that

[η ∈ AF] �⇒ [NK/F (η) � η[K:F]
� ζn

� 1] �⇒ [∃α ∈ AK , η � (τ − 1)(α)]

where τ is a generator of Gal(K/F) (Lemma 3.5.4). For this α we have K(α) ⊂ K, thus
the ΓF-action on 〈a〉 factors through Gal(K/F). Since τk (α) � ηkα for all k ≥ 0, it follows
that {σ ∈ ΓF : σ(α) � α} � ΓK , so K � F(α). Now

(τ − 1)(℘(α)) � ℘ ((τ − 1)(α)) � ℘(η) � 1,

hence ℘(α) ∈ ℘(AK) ∩ AF ⊂ ∆, so K ⊂ F(℘−1(∆)) as required.
Let E � F(℘−1(∆)) as above and consider (3.3). Its injectivity has been established,

and it is routine to check that χa factors through Gal(E/F) whenever a ∈ ∆. To show
the surjectivity of (3.3), note that every χ ∈ Homcont(Gal(E/F), µ℘) must factor through
Gal(K/F) for some �nite cyclic K/F. Fix such a K/F and pick a generator τ of Gal(K/F).
As before, µ℘ ∈ AF implies

NK/F (χ(τ)) � χ(τ)[K:F]
� χ

(
τ[K:F]

)
� 1,

hence ∃α ∈ AK with χ(τ) � (τ − 1)(α). Put a :� ℘(α), one veri�es (τ − 1)(a) �

℘(χ(τ)) � 1, hence a ∈ ℘(AE) ∩ AF � ∆. Summing up, we have shown χ(τ) � χa (τ),
which entails χ � χa . This establishes the surjectivity of (3.3).

By the injectivity of a · ℘(AF) 7→ χa , we conclude that ∆ can be read o� from E �

F(℘−1(∆)) as {a ∈ AF : χa |ΓE � 1}. We have arrived at the bijectivity of ∆ 7→ F(℘−1(∆)).
�

We give two well-known examples of this framework.
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Kummer theory Let A :� (Fsep)× (multiplicative group) on which ΓF acts. Then AE �

E× and the norm mapsNL/E are nothing but the usual norms for �eld extensions;
cf. Proposition 3.3.5. Take

℘ : a 7→ an , n ∈ �≥1.

We must assume that
⋆ F contains all the n-th roots of 1, so that µ℘ ⊂ AF;
⋆ n is coprime to p :� char(F) whenever p > 0, so that ℘ : A→ A is surjective.

Artin-Schreier theory Let A :� Fsep (additive group) on which ΓF acts. As before,
AE � E andNL/E � TrL/E. Assume p � char(F) > 0 and take

℘ : a 7→ ap − a.

Note that µ℘ is just the prime �eld�p of F in this case. The surjectivity of ℘ results
from the separability of Xp − X.

As what one expects, in either case, the �eld F(S) generated by a subset S ⊂ A
(De�nition 3.5.5) coincides with the compositum of {F(x) : x ∈ S ⊂ Fsep}. The crucial
cohomological inputs Ĥ−1(E/F,AE) � {1} for both cases are settled as follows. Keep
the convention (3.2).

Theorem 3.5.7 (Hilbert’s Theorem 90: version ×). Let E/F be a cyclic extension, then every
element a ∈ E× with NE/F (a) � 1 takes the form (τ − 1)α for some α ∈ E×, where τ is a
generator of Gal(E/F).

Proof. Put n :� [E : F]. By the linear independence (Theorem 3.2.1) of the characters
1, · · · , τn−1 ∈ Gal(E/F), there exists γ ∈ E× satisfying

β :�
n−1∑

k�0

*,
∑

0≤h<k

τh+- (a) · τk (γ) , 0,

with the convention
(∑

0≤h<0 τ
h
)

(a) � 0(a) � 1 in the zeroth term.
One veri�es (1 − τ)(β) � a using NE/F (a) � 1. Take α :� β−1. �

Theorem 3.5.8 (Hilbert’s Theorem 90: version +). Let E/F be a cyclic extension, then every
element a ∈ E with TrE/F (a) � 0 takes the form (τ−1)α for some α ∈ E, where τ is a generator
of Gal(E/F).

Proof. By Theorem 3.2.1, there exists γ ∈ E with TrE/F (γ) �
∑
σ∈Gal(E/F) σ(γ) , 0. Form

β :�
n−1∑

k�0

*,
∑

0≤h<k

τh+- (a) · τk (γ) , 0,

with the convention
(∑

0≤h<0 τ
h
)

(a) � 0(a) � 0 in the zeroth term.
One readily checks that (1 − τ)β � TrE/F (γ)a. Take α � −TrE/F (γ)−1β. �

These results are named after the occurrence of the multiplicative version in [9,
Nummer 90], although it was previously known to Kummer.
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3.6 Cyclotomic polynomials
We shall review the rudiments of the theory of cyclotomic polynomials here. Warning:
the exposition given below is neither the shortest or the cleanest. Please refer to other
texts for the details.

Let �̄ be the algebraic closure of � inside �.

De�nition 3.6.1. Let n ∈ �≥1. An element ζ ∈ Q̄ is called an n-th root of unity if ζn � 1;
furthermore, it is called primitive if ζd , 1 for all 1 ≤ d < n.

A basic fact is that the n-th roots of unity form a cyclic subgroup ≃ �/n� of �̄×. Its
generators are precisely the primitive n-th roots of unity.

Lemma 3.6.2. Let ζn be a primitive n-th root of unity. The cyclotomic �eld �(ζn) is Galois
over �.

Proof. The extension is separable since we are in characteristic zero. Normality can
be shown as follows. Every σ ∈ Gal(�̄/�) must send ζn to another primitive n-th
root of unity, say of the form ζk

n for some k. Hence σ(ζn) ∈ �(ζn) and we deduce
σ(�(ζn)) ⊂ �(ζn). �

The cyclotomic polynomials Φn are de�ned by requiring that

Xn − 1 �

∏

d |n
Φd (X)(3.4)

holds for every n ∈ �≥1. By Möbius inversion, this amounts to

Φn (X) �
∏

d |n

(
X

n
d − 1

)µ(d)

where µ stands for the Möbius function:

µ(d) �


0, if d has square factors , 1,
(−1)k , if d is a product of k distinct primes.

The idea of de�ning Φn (X) is to remove all imprimitive contributions to Xn − 1. A
straightforward formula can be given as follows

Φn (X) �
∏

ζ:primitive n-th root of 1
(X − ζ).(3.5)

Indeed, it obviously satis�es (3.4).
Recall that Euler’s totient function φ is de�ned as

φ(n) � |(�/n�)× | � |{0 ≤ k < n : (k , n) � 1}|, n ∈ �≥1.

Lemma 3.6.3. For every n, the polynomial Φn is monic with integral coe�cients. Its degree
equals φ(n).
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Proof. Applying Möbius inversion to (3.4), we may write

Φn �
P
Q

for certain monic polynomials P,Q ∈ �[X]. Since Q |P and Q is monic, the Euclidean
division shows that the quotient Φn is monic with integral coe�cients as well. As
φ(n) � |{0 ≤ k < n : (k , n) � 1}|, we obtain degΦn � φ(n) by (3.5). �

Lemma 3.6.4. For every n, the cyclotomic extension�(ζn)/� has degree φ(n). Moreover, Φn
equals the minimal polynomial of ζn .

We reproduce the proof in [11, p.272] below.

Proof. Let P be the minimal monic polynomial of ζn over �. Since Φn (ζn) � 0 by (3.5),
we have P |Φn . If we can show Φn |P, then P � Φn and it will follow that [�(ζn) : �] �
degΦn � φ(n). It amounts to the assertion that every primitive n-th root of unity ζ is
a root of P.

Every such ζ can be written as ζk
n with (k , n) � 1; by breaking k into a product

of prime numbers, it su�ces to show the following: for every prime number p with
(p , n) � 1 and every ζ ∈ �̄,

P(ζ) � 0 �⇒ P(ζp) � 0.

Note that the same property holds if P is replaced by Xn−1. Write Xn−1 � P(X)Q(X).
The famous Gauss Lemma for polynomials asserts that P,Q ∈ �[X]. Recall the ring
homomorphism of “reduction modulo p”

�[X] −→ �p[X]

R(X) �
∑

i

aiX i 7−→ R̄(X) �
∑

i

āiX i .

where āi is the image of ai ∈ � in �p . If ζ is a root of P but ζp is not, then ζp must be
a root of Q by our earlier observation. Equivalently, ζ is a common root of Q(Xp) and
P(X). Now apply reduction modulo p, we have Q(Xp) � Q(X)

p
since xp � x holds in

�p . Since Q(Xp) and P(X) has a non-trivial common divisor, which can be taken to be
monic in�[X] by Gauss Lemma, we conclude that Q(X) and P(X) has a common root.
This is impossible: P(X)Q(X) � Xn − 1, whereas Xn − 1 is still separable as an element
of �p[X] since (Xn − 1)′ � nXn−1 and (n , p) � 1. We are led to contradiction. �

Corollary 3.6.5. Φn is irreducible.

Corollary 3.6.6. The group Gal(�(ζn)/�) is canonically isomorphic to (�/n�)×: to each
k ∈ (�/n�)× we attach the automorphism characterized by ζn 7→ ζk

n .

Proof. As observed in the proof of Lemma 3.6.2, every �-automorphism σ of �(ζn)
must take the asserted form for some k ∈ (�/n�)×, which is unique by the primitivity
of ζn . Since |Gal(�(ζn)/�) | � [�(ζn) : �] � φ(n) � |(�/n�)× |, every k ∈ (�/n�)× is
so realized. �
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LECTURE 4

MODULES

4.1 Review: rings and ideals
By an additive group we mean a commutative group A with binary operation written as
+ : (a , b) 7→ a + b, whose unit element is denoted as 0.

A ring is a triple (R, +, ·), where +, · : R × R → R are binary operations such that
(R, +) forms an additive group, and (R, ·) forms a monoid satisfying the law of dis-
tributivity

x(y + z) � x y + xz , (y + z)x � yx + zx.

As a rule, one writes R instead of (R, +, ·) unless necessary.
In particular, our rings are assumed to have a unit 1 with respect to multiplication.

A map φ : R → R′ is called a ring homomorphism if
⋆ φ(x + y) � φ(x) + φ(y),
⋆ φ(x y) � φ(x)φ(y),
⋆ φ(1) � 1

hold for all x , y ∈ R. The notions of isomorphism, automorphism, etc. are deduced in
the usual manner. The kernel of φ is ker(φ) :� φ−1(0); its image im(φ) is a subring of
R′.

De�nition 4.1.1. A subgroup a of a ring R is called a left (resp. right) ideal if ra ⊂ a
(resp. ar ⊂ a) for all r ∈ R. If a is both a left and right ideal, we call it a two-sided ideal.

Given two ideals (either left, right or two-sided) a and b, their sum is de�ned as
a + b :� {a + b : a ∈ a , b ∈ b}: it is the smallest ideal containing a ∪ b. Similarly one can
de�ne the sum of any family of ideals in R. Intersections and sums of ideals are still
ideals.

If a is a two-sided ideal of R, the quotient ring R/a is the quotient group (R/a , +)
(whose elements are additive cosets of the form r + a) equipped with the well-de�ned
multiplication

(r + a)(r′ + a) :� rr′ + a
for which the coset 1+a gives the unit element. The ring structure is de�ned so that the
quotient map R ։ R/a is a ring homomorphism with kernel a. Conversely, for every
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homomorphism φ : R → R′ we have the ring isomorphism

R/ker(φ)
∼→ im(φ)

r + ker(φ) 7→ φ(r).

The basic theorems on ring homomorphisms can be found in any reasonable text-
book on algebra, such as [11, §2.7].

De�nition 4.1.2. Let R be a ring, the opposite ring Rop is the same underlying additive
group (R, +) equipped with the “reversed” multiplication

(r, r′) 7→ r′r.

We say R is commutative if R � Rop.

4.2 Modules: basic de�nitions
In what follows, we �x a ring R.

De�nition 4.2.1. A left R-module is a commutative group (M, +) equipped with a map

R ×M −→ M
(r,m) 7−→ rm ,

called scalar multiplication, satisfying
(i) r(r′m) � (rr′)m,

(ii) r(m + m′) � rm + rm′,
(iii) (r + r′)m � rm + r′m,
(iv) 1 · m � m

for all r, r′ ∈ R and m ,m′ ∈ M. If the scalar multiplication is written on the right
(m , r) 7→ mr, we deduce the notion of right R-module upon replacing (i) by the condi-
tion (mr)r′ � m(rr′), while retaining the obvious analogues of (ii) and (iii).

Exercise 4.2.2. Explain that a left R-module is nothing but a right Rop-module, and vice
versa.

For commutative R, there is no need to distinguish between left and right R-modules.
To save clutter, the following discussions concern only the left modules; transition to
the right ones is straightforward.

Example 4.2.3. The ring R itself can be made into a left (resp. right) R-module: simply
take the scalar multiplication a�orded by the ring structure. The submodules of R are
exactly the left (resp. right) ideals.

De�nition 4.2.4. A map φ : M → M′ between R-modules is called a homomorphism
if
⋆ φ is a homomorphism between the underlying additive groups,
⋆ φ(rm) � rφ(m) for all r ∈ R and m ∈ M.
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One deduces the notions of isomorphisms, automorphisms, etc. The kernel of φ is the
submodule ker(φ) :� φ−1(0) of M.

For a submodule N of M, the quotient module M/N is the quotient additive group
M/N endowed with scalar multiplication r(m + N) :� rm + N , so that the quotient map
M ։ M/N becomes a homomorphism between modules. As in the case of groups, we
have the familiar properties on homomorphisms:

1. If φ : M → M′ is a homomorphism, then m + ker(φ) 7→ φ(m) gives an isomor-
phism M/ker(φ)

∼→ im(φ).

2. If φ is surjective, then there is a bijection

{submodules of M′} 1:1←→ {submodules N ⊂ M, N ⊃ ker(φ)}
N′ 7→ φ−1(N′)

φ(N) ← � N ;

under this bijection we have the isomorphism M/N
∼→ M′/N′ given by m +

ker(φ) 7→ φ(m).

3. Let M,N be submodules of some ambient module Ω, then the composition of
M ֒→ M + N ։ (M + N)/N induces an isomorphism

M/(M ∩ N)
∼→ (M + N)/N.

Detailed but boring proofs can be found everywhere. De�ne the cokernel of φ : M → M′
as

coker(φ) :� M′/im(φ).

One important feature of the category of R-modules (we shall discuss the categories
later) is that for every M,M′, the set of homomorphisms HomR (M,M′) is an additive
group: given φ, φ′, de�ne φ + φ′ as the pointwise addition:

φ + φ′ : m 7−→ φ(m) + φ′(m).

The unit element in HomR (M,M′) is the zero homomorphism 0 : ∀m 7→ 0. The com-
position of homomorphisms HomR (M′M′′)×HomR (M,M′) → HomR (M,M′′) is then
bi-additive, namely

φ(ψ1 + ψ2) � φψ1 + φψ2, (ψ1 + ψ2)φ � ψ1φ + ψ2φ.

Here we write φψ � φ ◦ ψ, etc.
Let us specialize to the case of endomorphisms EndR (M) :� HomR (M,M). With

the aforementioned operations, EndR (M) becomes a ring whose unit element 1 is the
identity homomorphism idM .

Finally, we will write 0 for the zero module {0}.
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4.3 Direct sums and free modules
Fix a ring R. In what follows, R-modules mean left R-modules.

De�nition 4.3.1. Let (Mi)i∈I be a family of R-modules indexed by a set I. De�ne its
direct sum or coproduct as

⊕

i∈I

Mi :�
(mi)i∈I ∈

∏

i∈I

Mi : mi � 0 for all but �nitely many i


The direct sum comes equipped with a family of inclusion homomorphisms

ι j : M j −→
∏

i∈I

Mi

m j 7−→ (mi)i∈I , mi :�


m j , i � j,
0, i , j.

When I is �nite, say I � {1, . . . , n}, we write M1 ⊕ · · · ⊕ Mn for their direct sum.
Direct sum satis�es the following universal property:

Lemma 4.3.2. Let φi : Mi → N (i ∈ I) be a family of homomorphisms between R-modules.
There exists a unique homomorphism φ :

⊕
i∈I Mi → N making the following diagram com-

mute
M j N

⊕
i∈I Mi

φ j

ι j ∃!φ

for each j ∈ I. Recall that commutativity here signi�es that φ ◦ ι j � φ j .

Proof. We must have φ(ι j (m j)) � φ j (m j) for each j ∈ I. By the de�nition of
⊕

i Mi ,
this uniquely determines the homomorphism φ. �

Remark 4.3.3. It is a typical result in category theory that such a universal property charac-
terizes

⊕
i∈I Mi together with (ιi)i∈I , up to a unique isomorphism. Although categories

will not discussed in this lecture, we can sketch the argument as follows. Consider two
R-modules X, X′ with families of homomorphisms ιi : Mi → X and ι′i : Mi → X′ sat-
isfying the assertion of Lemma 4.3.2. Then taking N � X and X′ yields unique arrows
φ : X → X′ and ψ : X′→ X sitting inside commutative diagrams

Mi

X X′ X

ιi ι′i
ιi

φ

ψφ

ψ

for every i ∈ I. The uniqueness part of Lemma 4.3.2 (for X) in the case N � X asserts
that ψφ � idX . The same reasoning gives φψ � idX′ as well. Hence φ and ψ are the
required unique isomorphisms.
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The universal property may also be summarized as a natural isomorphism

HomR *,
⊕

i∈I

Mi ,−+-
∼→

∏

i∈I

HomR (Mi ,−)

φ 7→ (φιi)i∈I

Similarly, one de�nes the direct product or simply product
∏

i∈I Mi by removing the
condition “mi � 0 for all but �nitely many i” in De�nition 4.3.1. It is equipped with
a family of projection maps π j :

∏
i∈I Mi → M j ( j ∈ I). Direct products satisfy the

universal property

HomR *,−,
⊕

i∈I

Mi+-
∼→

∏

i∈I

HomR (−,Mi)

φ 7→ (πiφ)i∈I .

Exercise 4.3.4. Check the universal property above for
∏

i∈I Mi .

Notice that when I is �nite, we have
⊕

i∈I Mi �
∏

i∈I Mi .

De�nition 4.3.5. An R-module is called free with basis X if
⋆ the subset X generates M: every element of M can be written as a �nite sum∑

x∈X rxx;
⋆ X is linearly independent: we have

∑
x rx x �

∑
x sxx if and only if rx � sx for all

x ∈ X.
In other words, there is an isomorphism from R⊕X (the direct sum of X copies of the
module R) onto M, sending ιx (1) to x for each x.

Exercise 4.3.6. Establish the following universal property for free modules. Let X be
a set and form the free module R⊕X ; it is endowed with the natural inclusion map
X ֒→ R⊕ (between sets). For every R-module M and any map f : X → M, there exists
a unique homomorphism φ : R⊕X → M between R-modules making the diagram

X R⊕X

M
f

∃!φ

commutative.

We say a ring R has left IBN (invariant basis number for left modules) if R⊕X ≃
R⊕Y ⇐⇒ |X | � |Y |; if that holds, one can well-de�ne the notion of rank of free left
R-modules. Likewise, there is a notion of right IBN. Rings with this property include
the �elds, commutative rings, �nite rings and division rings, as discussed below.

Example 4.3.7. Let D be a division ring, i.e. D× � D \ {0}. A left (resp. right) D-module
is called a left (resp. right) D-vector space. When D is a �eld (= commutative division
ring), we revert to the familiar set-up of linear algebra. Many properties carry over to
the noncommutative case, for instance:
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⋆ every D-vector space V is free, i.e. V admits a basis;
⋆ every generating set of V contains a basis, and every linearly independent subset

can be enlarged to a basis;
⋆ the bases of V have the same cardinality, which we de�ne to be the dimension

dimD V of V .
Life is not always so easy, however. To take one example: can you generalize the deter-
minants to �nite-dimensional D-vector spaces? See [24, pp.5–8] for a discussion on the
so-called Dieudonné determinant.

More detailed discussions on IBN can be found in [14, §1].

4.4 Exact sequences
Hereafter, we �x a ring and the R-modules are assumed to be left modules unless oth-
erwise speci�ed..

De�nition 4.4.1. A sequence of R-modules

. . .
f −2

−−→ X−1 f −1

−−→ X0 f 0

−−→ · · · → X i f i

−→ · · ·
(possibly in�nite or even cyclic, in which case we take i ∈ �/n�) connected by homo-
morphisms f i : X i → X i+1 is called a complex if

∀i , ker( f i+1) ⊃ im( f i), i.e. f i+1 f i
� 0,

in which case we set H i (X•) :� ker( f i+1)/im( f i). A complex (X•, f •) with H i (X•) � 0
for all i is called exact.

Exact sequence is an indispensable tool in algebra and will be used systematically
in what follows. Let us look at some special cases.

1. The sequence 0 → X → Y is exact if and only if X → Y is injective. Note that
the only arrow that emanates or lands in the zero module 0 is the zero homomor-
phism.

2. The sequence X → Y → 0 is exact if and only if X → Y is surjective.

3. The sequence 0 → X
φ−→ Y → 0 is exact if and only if φ : X → Y is an isomor-

phism.

4. Short exact sequences are exact sequences of the form

0→ M′→ M → M′′→ 0.

In this case, exactness amounts to saying that M′ (resp. M′′) can be regarded as a
submodule (resp. quotient) of M (cf. the previous two cases.), so that M′′ � M/M′
under these identi�cations.



43

To illustrate the ideas, consider the commutative diagram

(4.1)

ker′ ker ker′′

X′ X X′′ 0

0 Y′ Y Y′′

coker′ coker coker′′

with the self-evident notations

ker :� ker[X → Y],
coker :� coker[X → Y] � Y/im[X → Y],

etc., and we assume that the rows involving X•, Y• are both exact.
The de�nitions of the maps ker′ → ker, ker → ker′′ and coker′ → coker, coker →

coker′′ can be read o� from the commutativity of the diagram, which we leave to the
reader. It remains to explain the dashed connecting homomorphism:

(i) given x′′ ∈ ker′′, choose any X ∋ x 7→ x′′;
(ii) let x 7→ y ∈ Y, then the commutativity of the diagram forces y 7→ 0 ∈ Y′′;

(iii) hence ∃y′ ∈ Y′, y′ 7→ y.
One may check that the assignment x { y′ induces a homomorphism ker′′ → coker′
that is independent of all choices.

Proposition 4.4.2 (Snake lemma). In the diagram (4.1), the sequence

ker′→ ker→ ker′′→ coker′→ coker→ coker′′

is exact.

The proof is also a typical diagram-chasing. The reader is urged to try it out by him-
or herself.
Remark 4.4.3. In practice, we often encounter snake diagrams with short exact sequences
0→ X′→ X → X′′→ 0 and 0→ Y′→ Y → Y′′→ 0. In that case, the resulting “snake
sequence” can be augmented to an exact sequence 0→ ker′→ · · · → coker′′→ 0.

4.5 Chain conditions
Retain the earlier conventions on rings and modules.

De�nition 4.5.1 (Ascending chain condition). An R-module M is said to be noetherian
if it satis�es the following ascending chain condition, often abbreviated as ACC: every
chain

M1 ⊂ M2 ⊂ M3 ⊂ · · ·
of submodules of M stabilizes, that is, there exists n such that Mn′ � Mn for all n′ ≥ n.
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De�nition 4.5.2 (Descending chain condition). An R-module M is said to be artinian if
it satis�es the following descending chain condition, often abbreviated as DCC: every
chain

M1 ⊃ M2 ⊃ M3 ⊃ · · ·
of submodules of M stabilizes, that is, there exists n such that Mn′ � Mn for all n′ ≥ n.

One of the motivation for chain conditions is E. Artin’s generalization of Wedder-
burn’s Theorem on semisimple algebras.

Note that being noetherian is equivalent to that every nonempty family S of sub-
modules of M contains a maximal element with respect to ⊂. Indeed, assuming ACC,
if S has no maximal elements, we may take any M1 from S, then select S ∋ M2 ) M1
and so forth, thereby obtain an ascending chain that does not stabilize. Conversely, let
S be the family {M1,M2, . . .} with ∀i , Mi ⊂ Mi+1; if S has a maximal element Mn ,
then the chain M1 ⊂ M2 ⊂ · · · will stabilize after Mn . In the same manner, being ar-
tinian is equivalent to that every nonempty familyS of submodules contains a minimal
element. Let us look at some examples.

1. View � as a �-module. It is noetherian since every submodule (= ideal) is of the
form m� for some m ∈ �≥0, and

m1� ⊂ m2� ⊂ m3� ⊂ · · · ⇐⇒ · · · | m3 | m2 | m1;

thus ACC holds true as m1 has only �nitely many factors. On the other hand,
DCC fails obviously: consider the ascending chain Mi :� 2i� for i ∈ �≥0.

2. Let p be a prime number and consider the �-submodule �(p)/� of �/� where

�p :�
{

a
pk
∈ � : k ≥ 0, a ∈ �

}
.

One can show that submodules of �(p)/� are of the form p−k�/� for k ≥ 0.
Therefore DCC holds but ACC fails: we have a chain 1

p� (
1
p2� ( · · · .

3. Suppose that R contains some division ring D, so that every R-module M be-
comes a D-vector space. If dimD M is �nite, then ACC and BCC both hold by
reason of dimensions.

4. Finite modules are both artinian and noetherian.

Exercise 4.5.3. Verify the assertion on the �-submodules of �(p)/�. Hint: if (a , p) � 1,
show that ap−k +� generates the submodule p−k�/� of �(p)/�.

Lemma 4.5.4. An R-module M is noetherian if and only if every submodule N is �nitely
generated.

Proof. Suppose M is noetherian and �x a submodule N . Consider the familyS consist-
ing of �nitely generated submodules of N , it must has a maximal element N′. We claim
that N′ � N : otherwise N′ + Rx would be a larger element in S whenever x ∈ N r N′.
This shows the �nite generation of N .
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Conversely, suppose every N ⊂ M is �nitely generated. Let M1 ⊂ M2 ⊂ · · · be an
ascending chain of submodules of M. Then N :�

⋃
i≥1 Mi is a submodule as well; let

x1, . . . , xn be a set of generators of N . For every 1 ≤ i ≤ n, we have xi ∈ Mki for some
ki ≥ 0, therefore the chain stabilizes after Mk with k :� max{k1, . . . , kn }. �

Proposition 4.5.5. Let 0 → M′ → M → M′′ → 0 be a short exact sequence. Then M is
noetherian (resp. artinian) if and only if M′ and M′′ are both noetherian (resp. artinian).

Proof. We shall treat the noetherian case only, the arguments for the artinian case are
completely similar.

Suppose M noetherian. Every ascending chain in M′ is an ascending chain in M,
and every ascending chain (M′′i )i≥1 of M′′ is the image of an ascending chain (Mi)i≥1
in M with Mi ⊃ M′, so that M′′i � M′′i+1 ⇐⇒ Mi � Mi+1. Hence M′ and M′′ are
noetherian.

Conversely, suppose M′ and M′′ are noetherian. Let M1 ⊂ M2 ⊂ · · · be an ascending
chain of submodules in M, then so are (Mi + M′)/M′ and Mi ∩M′ in M/M′ ≃ M′′ and
M′, respectively. If M′ and M′′ are both noetherian, then for i ≫ 0 we have

Mi+1 ∩M′ � Mi ∩M′,
Mi + M′

M′
�

Mi+1 + M′

M′
,

therefore there are natural isomorphisms

Mi+1
Mi

�
Mi+1/Mi+1 ∩M′

Mi/Mi ∩M′
≃ (Mi+1 + M′)/M′

(Mi + M′)/M′
� 0.

We conclude that M is noetherian as well. �

Corollary 4.5.6. Let N,M be submodules of some R-moduleΩ. If M and N are both noetherian
(resp. artinian), then M + N is noetherian (resp. artinian) as well.

Proof. Use the short exact sequence

0→ N → M + N → M + N
N

→ 0,

and note that (M + N)/N ≃ M/M ∩ N . Now apply Proposition 4.5.5. �

De�nition 4.5.7. A ring R is called left noetherian (resp. artinian) if R is noetherian
(resp. artinian) as a left R-module. Idem for right noetherian/artinian rings.

Recall that a module M is called �nitely generated if there exists m1, . . . ,mn ∈ M
such that M �

⊕n
i�1 Rmi . This amounts to saying that M is a quotient of R⊕n for some

n ∈ �≥0 — use the universal property for free modules (Exercise 4.3.6).

Proposition 4.5.8. If R is left noetherian (resp. artinian), then every �nitely generated left
R-module is noetherian (resp. artinian). Idem for right R-modules.

Proof. Given an exact sequence R⊕n → M → 0, we have seen that R⊕n is noetherian
(resp. artinian) by applying the previous Corollary (with induction on n). It remains
to apply Proposition 4.5.5. �
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4.6 Hilbert basis theorem
When R is a commutative ring, there is no need to distinguish the left and right noethe-
rian or artinian properties. For a commutative ring R, we write 〈x1, . . . , xn〉 to denote
the ideal generated by x1, . . . , xn ∈ R.

For any polynomial f �
∑n

k�0 akXk ∈ R[X] with an , 0, we call in( f ) :� an the initial
or leading coe�cient of f .

Theorem 4.6.1 (Hilbert). Let R be a commutative ring. If R is noetherian, so is the polynomial
ring R[X] over R.

Proof. By Lemma 4.5.4, it su�ces to show the �nite generation of every ideal a of R[X].
We choose a sequence of elements f1, . . . ∈ a as follows. Choose f1 ∈ a to be a nonzero
element with deg f1 minimal. Assume that f1, . . . , fk have been chosen. If they already
generate a, our algorithm stops, otherwise choose fk+1 to be an element in ar〈 f1, . . . , fi〉
with minimal degree. We contend that the algorithm stops in �nitely many steps.

For every i ≥ 1, let ai :� in( fi). The ideal of R generated by a1, a2, . . . is generated by
a �nite subsequence, say a1, . . . , an . Suppose that one can choose fn+1 ∈ a , 〈 f1, . . . , fn〉
by the recipe above. There exists u1, . . . , un ∈ R such that

in( fn+1) �
n∑

i�1
uiai .

Observe that deg fn+1 ≥ deg fi for all 1 ≤ i ≤ n by construction, hence

fn+1 −
n∑

i�1
ui fi · Xdeg fn+1−deg fi

has degree less than deg fn+1; moreover, it lies in a r 〈 f1, . . . , fn〉. This leads to a con-
tradiction. We conclude 〈 f1, . . . , fn〉 � a. �

Remark 4.6.2. It follows that R[X1, . . . ,Xn] is noetherian if R is noetherian, for every
n ∈ �≥1. Indeed,

R[X1, . . . ,Xn] ≃ (· · · ((R[X1])[X2]) · · · ) [Xn],

and we may argue by induction on n.
Using Hilbert’s theorem together with our earlier results, one obtains many exam-

ples of noetherian rings, such as the quotient rings of the polynomial ring k[X1, . . . ,Xn]
where k is a �eld.

Exercise 4.6.3. Give an example of non-noetherian commutative ring.



LECTURE 5

TENSOR PRODUCTS AND ALGEBRAS

We will occasionally denote the unit of a ring R as 1R.

5.1 Categories at a glance
In these lectures, a category C is a class of objects Ob(C) together with a set Hom(X,Y)
of morphisms for every X,Y ∈ Ob(C), with the structures below.

⋆ There is a composition map Hom(Y, Z)×Hom(X,Y) → Hom(X, Z) for all X,Y, Z ∈
Ob(C), written as ( f , g) 7→ f g � f ◦ g. It is associative: f (gh) � ( f g)h provided
that the composites make sense. It is convenient to represent morphisms as ar-
rows:

f ∈ Hom(X,Y) ↔ [ f : X → Y]↔
[
X

f−→ Y
]
.

Therefore one can talk about commutative diagrams in a category.

⋆ For every object X, there exists an identity morphism idX ∈ Hom(X,X) such that
idX ◦ f � f and g ◦ idX � g for all Y ∈ Ob(C), f : Y → X and g : X → Y.

Exercise 5.1.1. Show that for each X, the identity morphism idX is unique.

Remark 5.1.2. Categories whose objects form a set are called small. Small categories are
not enough for many applications, whereas a category theory with proper classes is
somehow messy. A standard practice is to use Grothendieck universes to circumvent the
set-theoretical di�culties; see [17, I.6].

Given a category C, de�ne its opposite Cop as the category with the same objects and
morphisms, but the arrows are reversed, namely

HomCop (X,Y) :� HomC (Y,X),
f ◦ g︸︷︷︸
Cop

:� g ◦ f︸︷︷︸
C

.

Trivially, we have (Cop)op
� C.

Let us look at some examples.

47
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Category Objects Morphisms Composition

Set sets maps

◦
Grp groups

homomorphisms
Ring rings

R-Mod left R-modules

Mod-R right
R-modules

Π1(X) points in a
space X

paths up to homo-
topy

concatenation

(P, ≤): par-
tially ordered elements of P

Hom(x , y) �
{≤}, x ≤ y
∅, x � y

transitivity of ≤

The notions of isomorphisms, automorphisms, inverses, etc. are de�ned in the
usual manner in any category. In particular, the automorphisms of an object form
a group under composition. For example, the automorphism group of an object x
in Π1(X) is nothing but the fundamental group π1(X, x) when X is reasonable (path-
connected, locally contractible, etc.)

The universal properties in algebra can be succinctly interpreted in terms of initial or
terminal elements.

De�nition 5.1.3. An object X in a category C is an initial (resp. terminal) object if
Hom(X,Y) (resp. Hom(Y,X)) has exactly one element for every Y ∈ Ob(C).

Initial and terminal objects are “dual” properties: one can pass in between upon
replacing C by Cop.

Example 5.1.4. The ring � is initial in Ring; any set with cardinality one is terminal in
Set.

Proposition 5.1.5. Initial elements are unique up to a unique isomorphism. Idem for terminal
elements.

Proof. Let X,X′ be two initial elements of C. Then there is a unique morphism ϕ :
X → Y (resp. ψ : Y → X). The composite ϕψ is the unique morphism from Y to
itself, namely idY . Similarly we have ψϕ � idX . Thus ϕ and ψ are the required unique
isomorphisms. To deal with the terminal objects, simply replace C by Cop. �

5.2 Functors and natural transformations
According to S. MacLane [17], one of the founders of category theory, categories were
introduced in order to explain the functors, the latter were in turn designed to account
for natural transformations. To set up the theory, however, one has to proceed in the
reverse direction.
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De�nition 5.2.1. A functor F : C1 → C2 between categories is a rule that
⋆ assigns an object FX of C2 for every object X of C1;

⋆ assigns a morphism F f : FX → FY for every morphism f : X → Y in C1, which
sends idX to idFX and respects compositions: we have F( f g) � (F f )(Fg).

De�nition 5.2.2. A natural transformation between functors F,G : C1 → C2 is a family
ϕ � (ϕX)X∈Ob(C1) of morphisms ϕX : FX → GX, such that the diagram

FX FY

GX GY

F f

ϕX ϕY

G f

commutes for every morphism f : X → Y in C1.
Natural transformations can be composed by setting (ϕψ)X � ϕXψX , therefore we

deduce the notion of inverses and isomorphisms, denoted in the usual way as ϕ : F
∼→

G, etc. Note that the natural transformations can also be conceived as “morphisms
between functors” if we know how to make the functors C1 → C2 into a category.
De�nition 5.2.3. An equivalence between categories C1, C2 is a pair of functors

C1 C2

F

G

together with isomorphisms

FG ≃ idC2 , GF ≃ idC1

(surely, id signi�es the identity functors). In this case we say that F and G are quasi-
inverses of each other.

Note that the notion above is much more useful than the naive notion of isomor-
phisms FG � idC2 , GF � idC1 . Quasi-inverses are not unique in general.
Example 5.2.4. Let Vect(�) be the category of complex vector spaces. The assignment

D : V 7−→ V∨ :� Hom�(V,�)

extends to a functor from Vect(�) to its opposite, namely to each linear map f : V →W
we attach its dual f ∨ : W∨ → V∨, which sends a linear functional λ : V → � to
f ∨(λ) :� λ ◦ f : W → �. As is well-known, there is a canonical embedding

V ֒→ V∨∨

for each vector space V into its bidual. It is actually a natural transformation

id→ DD ,

which is an isomorphism exactly when dim V is �nite. By restricting D to the subcate-
gory Vect f (�) of �nite-dimensional spaces, D yields an equivalence between Vect f (�)
and its opposite.
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5.3 Bimodules
We have de�ned the notion of left and right modules over a ring. A bimodule is a
structure endowed with left and right scalar multiplications which commute with each
other.

De�nition 5.3.1. An (R, S)-bimodule is an additive group M which is simultaneously
a left R-module and a right S-module, satisfying

r(ms) � (rm)s , m ∈ M, r ∈ R, s ∈ S.

The formula above can thus be written as rms, conceived as some sort of associa-
tivity. There are evident notions of homomorphisms, isomorphisms and quotients, etc.
for (R, S)-bimodules. The category so obtained will be written as (R, S)-Mod.

De�nition 5.3.2. A map ϕ : M → M′ between (R, S)-bimodules is called a homo-
morphism if it is simultaneously a homomorphism between left R-modules and right
S-modules.

Example 5.3.3. Every left R-module M has a unique structure of (R,�)-bimodule: we
can and must set ma :� am, where m ∈ M, a ∈ �. Since the natural homomorphism
� → R lands in the center of R, we see M is indeed a bimodule. Similarly, right R-
modules are nothing but (�, R)-bimodules.

All these identi�cations can be stated in terms of equivalences (or even isomor-
phisms) between categories of modules.

Example 5.3.4. When R is commutative, every R-module M is naturally an (R, R)-
bimodule: simply set rmr′ :� rr′m.

Convention 5.3.5. Hereafter, we will often use the notation RM (resp. MS, RMS) to de-
note that M is a left R-module (resp. right S-module, (R, S)-bimodule).

5.4 Balanced products and tensor products
Balanced products generalize the notion of bilinear maps in linear algebra. Our main
reference is [12, §3.7]. The modern notion of tensor products is commonly attributed
to H. Whitney [28].

De�nition 5.4.1. Let R be a ring. Consider modules MR, RN and an additive group A.
A map

B : M × N → A

is called a balanced product if it satis�es
(i) B(x + x′, y) � B(x , y) + B(x′, y),

(ii) B(x , y + y′) � B(x , y) + B(x , y′),
(iii) B(xr, y) � B(x , r y),
where x , x′ ∈ M, y , y′ ∈ N and r ∈ R are arbitrary. The set of all balanced products
B : M × N → A is denoted by Bil(M,N ; A). It forms an additive group.
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When R � �, we recover the notion of bi-additive maps from M × N to A where
M,N,A are all additive groups.

Given MR, RN as above, a morphism from B ∈ Bil(M,N ; A) to B′ ∈ Bil(M,N ; A′) is
de�ned as a commutative diagram

A

M × N

A′

group homomorphism

B

B′

Such morphisms can be composed in the obvious manner, thereby making the balanced
products with domain M × N into a category Bil(M,N ; ∗).
De�nition 5.4.2. The tensor product of M and N is a balanced product M×N → M ⊗

R
N

satisfying the following universal property: for every balanced product B : M×N → A,
there exists a unique group homomorphism M ⊗

R
N → A making

M × N M ⊗
R

N

A

B ∃!

commutative. In other words, it is an initial object in the category Bil(M,N ; ∗).
Proposition 5.4.3. Tensor products of M and N , if they exist, are unique up to a unique iso-
morphism.

Proof. Invoke Proposition 5.1.5. �

It is customary to say that M ⊗
R

N is the tensor product. Nevertheless, one should
bear in mind that tensor products make little sense without the accompanying map
M × N → M ⊗

R
N , which we often write as (x , y) 7→ x ⊗ y.

Lemma 5.4.4. For all MR, RN , tensor product M × N → M ⊗
R

N exists.

Proof. Consider the free �-module (i.e. additive group) F with the set M × N as its
basis. De�ne I to be the submodule generated by elements of the form

(x + x′, y) − (x , y) − (x′, y)
(x , y + y′) − (x , y) − (x , y′)

(xr, y) − (x , r y)

where (x , y) ∈ M × N and r ∈ R. Put M ⊗
R

N :� F/I and denote the image of (x , y) ∈
M ×N in F/I as x ⊗ y. We claim that the map M ×N → M ⊗

R
N sending (x , y) to x ⊗ y

is the tensor product.
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By construction, we obviously have the properties (x + x′) ⊗ y � x ⊗ y + x′ ⊗ y,
x ⊗ (y + y′) � x ⊗ y + x ⊗ y′ and xr ⊗ y � x ⊗ r y inside M ⊗

R
N � F/I, thus (x , y) 7→ x ⊗ y

is indeed a balanced product. Now let B : M × N → A be any balanced product. By
the universal property of free modules, there exists a unique homomorphism

F −→ A
(x , y) 7−→ B(x , y).

By the de�nition of I together with the fact that B is balanced, one sees I ⊂ ker(F → A).
Hence there is a unique homomorphism

M ⊗
R

N −→ A

x ⊗ y 7−→ B(x , y).

In other words, there is a unique homomorphism of balanced products from M×N →
M ⊗

R
N to B. �

5.5 Functorial properties of tensor products
Consider bimodules RMS and SNT where R, S, T are rings. We have de�ned the ad-
ditive group M ⊗

S
N . As the notation suggests, the scalar multiplications by R and T

should pass to M ⊗
S

N .

Lemma 5.5.1. There exists an (R, T)-bimodule structure on M ⊗
S

N , characterized by

r(x ⊗ y) � rx ⊗ y ,
(x ⊗ y)t � x ⊗ (yt)

for all (x , y) ∈ M × N and r ∈ R, t ∈ T.

Proof. One may tend to use the explicit construction in the proof of Lemma 5.4.4. A
slicker way is to exploit the universal property as follows. Recall that M ×N → M ⊗

S
N

is a balanced product. Given r ∈ R, the map

Lr : (x , y) 7→ rx ⊗ y

is also balanced, thus induces a group homomorphism λr : x ⊗ y 7→ rx ⊗ y. The
relation λr1r2 � λr1λr2 is then evident, and it is also clear that λ1 � id. This gives the
left R-module structure.

Likewise, the maps
Rt : (x , y) 7→ x ⊗ yt , t ∈ T

furnish a family of homomorphisms
(
ρt : x ⊗ y 7→ x ⊗ yt

)
t∈T , therefore equip M ⊗

S
N

with a right T-module structure. It remains to show λrρt � ρtλr for all r, t, which is
also clear: both sides send x ⊗ y to (rx) ⊗ (yt). �
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Note that taking R � T � � reverts to the earlier situation.

Lemma 5.5.2. Let ϕ : RMS → RM′S and ψ : SNT → SN′T be homomorphisms. There exists a
unique homomorphism of (R, T)-bimodules satisfying

ϕ ⊗ ψ : M ⊗
S

N −→ M′ ⊗
S

N′

x ⊗ y 7−→ ϕ(x) ⊗ ψ(y).

Such homomorphisms behave well under composition: we have (ϕ ⊗ ψ)(α ⊗ β) � (ϕα) ⊗
(ψβ) provided that the compositions ϕα and ψβ make sense.

Proof. Use universal property: the composite

M × N
(ϕ,ψ)−−−−→ M′ × N′→ M′ ⊗

S
N′

de�nes a balanced product, therefore induces a homomorphism ϕ ⊗ ψ : M ⊗
S

N →
M′ ⊗

S
N′ uniquely characterized by

x ⊗ y 7−→ ϕ(x) ⊗ ψ(y), x ∈ M, y ∈ N.

From this one can check

(ϕ ⊗ ψ)(rx ⊗ yt) � ϕ(rx) ⊗ ψ(yt) � rϕ(x) ⊗ ψ(y)t ,

thus ϕ ⊗ ψ is a homomorphism between bimodules (cf. Lemma 5.5.1). The assertion
on compositions can be checked in the same manner. �

Summing up, we have shown that the tensor product furnishes a functor

⊗ : (R, S)-Mod × (S, T)-Mod −→ (R, T)-Mod
(M,N) 7−→ M ⊗

S
N (on objects)

(ϕ, ψ) 7−→ ϕ ⊗ ψ (on morphisms).

Exercise 5.5.3. Clarify the meaning of direct product × of categories in the displayed
formula.

We remark that the precise construction of tensor products is immaterial here; sim-
ply �x a choice of M × N → M ⊗

S
N for all RMS , SNT , what matters is that ϕ ⊗ ψ is

pinned down by Lemma 5.5.2.

Lemma 5.5.4 (Unit constraint). Regard a ring S as an (S, S)-bimodule, then there is a canon-
ical isomorphism

M ⊗
S

S
∼→ M

m ⊗ s 7→ ms

between (R, S)-bimodules, for every RMS. Similarly we have R⊗
R

M
∼→ M as (R, S)-bimodules.
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Here, canonical (sometimes called “functorial”) means that the isomorphisms for
various M �t into a natural transformation − ⊗

S
S → id between functors. It is called a

constraint since the identi�cation is given as a canonical isomorphism, instead of strict
identity �. In practice, however, it is almost safe to treat them as equalities: in general,
such an abuse is justi�ed by MacLane’s Coherence Theorem [17, VII.2].

Proof. The inverse is given by m ⊗ 1 ← � m. The veri�cation of the required properties
is straightforward. �

Lemma 5.5.5 (Associativity constraint). There are canonical isomorphisms

(M ⊗
R

M′) ⊗
S

M′′
∼→ M ⊗

R
(M′ ⊗

S
M′′)

(x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z),

for all MR, RM′S and SM′.

The adjective “canonical” has a similar meaning as before. The proof is left to the
reader.

Now assume R commutative. By Example 5.3.4, the tensor product M⊗
R

N is de�ned
for all R-modules M and N , and M ⊗

R
N itself is again an R-module by Lemma 5.5.1.

Thus it makes sense to talk about commutativity of tensor products.

Lemma 5.5.6 (Commutativity constraint). Let R be a commutative ring. There are canonical
isomorphisms

M ⊗
R

N
∼→ N ⊗

R
M

x ⊗ y 7→ y ⊗ x

between R-modules, for any R-modules M and N .

Proof. The homomorphism x ⊗ y 7→ y ⊗ x stems from the fact that (x , y) 7→ y ⊗ x is
a balanced product, thanks to the commutativity of R. Its inverse is simply y ⊗ x 7→
x ⊗ y. �

5.6 Algebras
Throughout this section, R is a commutative ring. We abbreviate M ⊗

R
N as M ⊗ N in

what follows.

De�nition 5.6.1. An (associative, unital) R-algebra is a ring A which is equipped with
an R-module structure, such that the multiplication is balanced (i.e. R-linear): we have

x(r y) � (xr)y (r ∈ R, x , y ∈ A)
� (rx)y by the prescription in Example 5.3.4
� r(x y).

A homomorphism between R-algebras is a ring homomorphism which is also R-linear.
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Figure 5.1: Hassler Whitney (1907–1989) is also a keen mountaineer. The picture shows
the Whitney–Gilman Ridge (YDS: 5.7) in New Hampshire, named after Whitney and
his cousin Bradley Gilman who made a famous ascent on August 3, 1929, nowadays
considered as a classic route. Source: mountainproject.com

Alternatively, the R-algebra structure of A can be speci�ed by giving a ring homo-
morphism η : R → A with image in the center of A; the corresponding R-module
structure on A is r · a � η(r)a for all r ∈ R, a ∈ A.

Note that by the universal property of ⊗, an R-bilinear multiplication as above
amounts to a homomorphism µ : A⊗A→ A between R-modules, namely via µ(x⊗y) �
x y. The theory of R-algebras has an alternative axiomatization as follows. We are given
an R-module A together with homomorphisms

µ : A ⊗ A→ A (multiplication),
η : R → A (unit)

between R-modules, subject to the following conditions.

Associativity The diagram

(5.1)
(A ⊗ A) ⊗ A A ⊗ A

A ⊗ A A

µ⊗id

id⊗µ µ

µ

commutes, where we invoked the associativity constraint (Lemma 5.5.5) to iden-
tify (A ⊗ A) ⊗ A with A ⊗ (A ⊗ A), interpreting µ ⊗ idA and idA ⊗ µ accordingly.
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Units The diagrams

(5.2)
A ⊗ R A ⊗ A

A

id⊗η

µ

R ⊗ A A ⊗ A

A

η⊗id

µ

both commute, where the arrowsց stand for the unit constraint (Lemma 5.5.4).

Indeed, we have remarked that µ accounts for the multiplication, whereas η pre-
scribes the unit 1A ∈ A via 1A � η(1R). In the same vein, a homomorphism between
R-algebras ϕ : A→ A′ is a morphism ϕ in R-Mod making the diagrams

(5.3)
A ⊗ A A′ ⊗ A′

A A′

ϕ⊗ϕ

ϕ

R A

A′
ϕ

commutative.
What is this paraphrase good for? The axioms above are arrow-theoretic — they carry

over to categories with a reasonable operation ⊗ admitting a “unit” (such as the R for
R −Mod), called monoidal categories or tensor categories. For an introduction to these
subjects, see [17, VII].

Example 5.6.2. Let k be a �eld. The ring of n × n-matrices over k becomes a k-algebra
under scalar multiplication. More generally, if R is a commutative ring and ϕ : R → A
is a ring homomorphism with im(ϕ) central in A, then multiplication via ϕ makes A
into an R-algebra.

De�nition 5.6.3. Reversal of arrows leads to the notion of coalgebras. More precisely,
an R-coalgebra is a triple (A,∆, ǫ) where A is an R-module equipped with homomor-
phisms∆ : A→ A⊗A (comultiplication) and ǫ : A→ R (counit), such that the reversed
versions of (5.1), (5.2) commute. Reversal of (5.3) yields the notion of homomorphisms
between coalgebras.

Exercise 5.6.4. Write down the precise conditions to be satis�ed by the comultiplication
and counit.

De�nition 5.6.5. Let A and B be R-algebras. Their tensor product is the R-module A⊗B
equipped with

⋆ the multiplication determined by

(A ⊗ B) ⊗ (A ⊗ B)
∼→ (A ⊗ A) ⊗ (B ⊗ B)

µA⊗µB−−−−−→ A ⊗ B

(Lemmas 5.5.5 and 5.5.6 intervene here), or more concretely by

(x ⊗ y) · (x′ ⊗ y) � xx′ ⊗ y y′;
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⋆ the unit given by
R
∼→ R ⊗ R

ηA⊗ηB−−−−−→ A ⊗ B

where Lemma 5.5.4 intervene, or more concretely by 1A⊗B � 1A ⊗ 1B.

Exercise 5.6.6. Check that A ⊗ B is indeed an R-algebra. Show that the assignment
x ⊗ y 7→ y ⊗ x induces a canonical isomorphism A ⊗ B

∼→ B ⊗ A as R-algebras.

Exercise 5.6.7. De�ne the tensor product of coalgebras.

Next, consider a homomorphism ϕ : R → S between commutative rings. Then S
becomes an R-algebra (namely, R acts on S by scalar multiplication viaϕ). Furthermore,
S can be enriched into an (S, R)-bimodule. Hence we obtain the base change for modules,
which is the functor

S ⊗
R
− : R-Mod −→ S-Mod

M 7−→ S ⊗
R

M

[ f : M → N] 7−→ idS ⊗ f .

The same can be said for algebras. For any R-algebra A, we have seen that S ⊗
R

A is
also an R-algebra. It is routine to check that it is actually an S-algebra: the multiplication
is S-linear. Hence S ⊗

R
− induces a functor R-Alg→ S-Alg.

For the next result, �rst observe that if A is an R-algebra, then so is its opposite ring
Aop. Also note that by Example 5.1.4, every ring is canonically a �-algebra, and vice
versa.

Proposition 5.6.8. Let A and B be rings. The category (A, B)-Mod is equivalent to (A ⊗
�

Bop)-Mod: to each (A, B)-bimodule M, the corresponding left A⊗ Bop-module structure on M
is given by

(a ⊗ b)m � amb , m ∈ M, a ∈ A, b ∈ B

and vice versa.

Proof. Straightforward. �

Thus the theory of bimodules can be subsumed into that of modules. For example,
we may deduce the notion of free bimodules, etc.
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LECTURE 6

SIMPLE, SEMISIMPLE AND
INDECOMPOSABLE MODULES

Throughout this lecture, we �x a ring R (nonzero, unital). By “R-modules” we always
mean left R-modules. The composition of homomorphisms is taken in the standard
order, namely f g � f ◦ g. Warning: in the future lectures the opposite notation will be
used occasionally.

6.1 Simple and semisimple modules
Simple modules can be conceived as some sort of building blocks in module theory.

De�nition 6.1.1. An R-module M is called simple if M , 0 and M has no submodules
other than M and {0}.

Looking for examples? Read on.

✕ Let a be a left ideal of R. The quotient R-module R/a is simple if and only if a is
maximal.

✕ When R is a division ring, an R-module (= vector space) is simple if and only if it is
of dimension one.

✕ Let R � Mn (D), the ring of n×n-matrices with entries in a division ring D. Consider

M :� Dn
�


column vectors

*....,

d1
...

dn

+////-
: d1, . . . , dn ∈ D


.

It becomes an R-module via matrix multiplication, say R×M ∋ (A, x) 7→ Ax ∈ M. It
is a trivial exercise (try it out!) in linear algebra to show that for m ∈ M r {0}we have
Rm � M. Hence M is simple. Note: to get a similar R-module, consider row vectors
instead.
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Theorem 6.1.2 (Schur’s Lemma). Let M1, M2 be simple R-modules and ϕ : M1 → M2 is a
homomorphism. Then either ϕ � 0 or ϕ is an isomorphism. In particular, the endomorphism
ring of a simple R-module is a division ring.

Proof. If ker(ϕ) � M1 then ϕ � 0, otherwise ker(ϕ) � 0 and in this case im(ϕ) , {0},
thus im(ϕ) � M2 and ϕ is bijective. �

Homomorphisms between direct sums of simple modules can be described in terms
of matrices. Let us illustrate the idea by the case of endomorphisms.

Corollary 6.1.3. Let M � M⊕n1
1 ⊕ · · · ⊕M⊕nr

r where M1, . . . ,Mr are distinct (up to ≃) simple
R-modules. Put Di :� EndR (Mi) for all i, which is a division ring by Schur’s Lemma. There
is a ring isomorphism

EndR (M)
∼−→

r∏

i�1
Mni (Di)

ϕ 7−→
[(
α(i)

jk

)

j,k
∈ Mni (Di)

]
1≤i≤r

where α(i)
j,k denotes the homomorphism

Mi
as the k-th summand−−−−−−−−−−−−−−→ M⊕ni

i

ϕ−−→ M⊕ni
i

project to the j-th summand−−−−−−−−−−−−−−−−−−→ Mi ;

note that ϕ(M⊕ni
i ) must land in M⊕ni

i by Schur’s Lemma.

Proof. Indeed, this is completely analogue to the case where R is a �eld, which is just
the classical theory of matrices. �

For the next result, recall �rst that we have de�ned the sum
∑

i Mi of a family of
submodules Mi inside some M. The homomorphism

⊕
i Mi → M induced from the

universal property of
⊕

is an isomorphism if and only if (i)
∑

i Mi � M, and (ii) Mi ∩∑
j,i M j � {0} for all i. Condition (ii) is equivalent to that


∑

i

xi � 0, xi ∈ Mi

 ⇐⇒ ∀i , xi � 0;

in other words, there are no linear relations among the summands Mi . In this circum-
stance, the “internal sum”

∑
i Mi and the “external direct sum”

⊕
i Mi may be naturally

identi�ed.

De�nition-Proposition 6.1.4 (Semisimple modules). The following are equivalent for
an R-module M.

(i) M is a sum of simple submodules.

(ii) M is a direct sum of simple submodules.

(iii) For every submodule M′ ⊂ M, there exists another submodule M′′ ⊂ M such that
M � M′ ⊕M′′.
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Under any one of these conditions, we call M a semisimple R-module.

Before undertaking the proof, let us record a simple observation.

Lemma 6.1.5. The property (iii) above passes to submodules and quotients of M.

Proof. Assume (iii) holds for M and consider a submodule M′ of M. Let M′0 be any
submodule of M′ and write M � M′0 ⊕ N for some N . Since M′0 ⊂ M′, it follows that

M′ � M′0 ⊕ (N ∩M′).

Hence M′ also satis�es (iii). Since every quotient of M is isomorphic to some submod-
ule of M, by (iii), the case of quotients follows. �

Proof of De�nition-Proposition 6.1.4. For (i) �⇒ (ii), suppose that M �
∑

i∈I Mi in which
each Mi is simple. Set

J :�


J ⊂ I :
∑

j∈ J

Mi �
⊕

j∈ J

Mi


.

It is nonempty: every singleton in I belongs to J. We contend that every totally ordered
subset (=chain) in the partially ordered set (J, ⊂) has upper bound: indeed, if J′ is
a chain, then J :�

⋃
J′∈J′ J′ belongs to J — the condition Mi ∩ ∑

j,i M j � {0} for the
directness of

∑
j∈ J M j may be checked in the �nite subsets of J, each lies in some J′ ∈ J′.

Hence there exists a maximal element J ∈ J.
If

∑
i∈ J Mi �

⊕
i∈ J Mi , M, then Mh 1

∑
i∈ J Mi for some h ∈ I. Since Mh is simple,

that would imply Mh ∩∑
i∈ J Mi � {0} from which we infer J ⊔ {h} ∈ J, a contradiction.

For (ii) �⇒ (iii), let M′ ⊂ M and assume M �
⊕

i∈I Mi . Set

J :�


J ⊂ I : M′ +
⊕

j∈ J

M j is direct

.

As before, Zorn’s Lemma furnishes a maximal element J ∈ J, and we contend that
M′′ :�

⊕
j∈ J M j satis�es M � M′⊕M′′. If not, there will exist h ∈ I with Mh 1 M′⊕M′′

and one may argue that J ⊔ {h} ∈ J as before.
For (iii) �⇒ (i), we let M0 be the sum of all simple submodules of M and contend

that M0 � M. There exists M′ ⊂ M with M � M′ ⊕M0. We must show that M′ � {0}. If
we can show that

every nonzero submodule of M contains a simple submodule,
then M′will contain a simple submodule which is necessarily contained in M0, contra-
diction. To prove the assertion above, one reduces immediately to the case where the
submodule in question takes the form M′ � Rv for some v ∈ M. There is an isomor-
phism

R/a −→ Rv � M′

r + a 7−→ rv

of R-modules, where a :� ker[r 7→ rv] is a left ideal of R.
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By Zorn’s Lemma, there exists a maximal left ideal m ⊃ a. Let M′′ :� mv ֒→ Rv �

M′. Condition (iii) holds true for M′ by virtue of Lemma 6.1.5, hence we may write
M′ � M′′ ⊕ N for some submodule N . It is the required simple submodule since

N ≃ M′/M′′ ≃ R/a
m/a

� R/m.

�

Exercise 6.1.6. Justify the existence of the maximal left idealm containing a used in the
proof.

Corollary 6.1.7. Submodules and quotients of a semisimple R-module M are still semisimple.

Proof. Done by Lemma 6.1.5. �

6.2 Schreier’s re�nement theorem
This section paves the way to the proof of the Jordan-Hölder theorem for modules. We
shall concentrate on the case of groups, which is actually harder and rarely covered in
our undergraduate curricula. The concept of groups with operators in [12] provides a
unifying framework; we do not pursue that approach.

Let G be a group, whose binary operation we write as multiplication. Write N ⊳ G
to denote that N is a normal subgroup of G. A normal series (also known as subnormal
series...) of G is a �nite chain of subgroups

G � G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gs+1 � {1}

verifying
∀0 ≤ i ≤ s , Gi+1 ⊳ Gi .

The corresponding set of subquotients is

{G0/G1,G1/G2, . . . ,Gs/Gs+1}

as a set with multiplicities, meaning that repetitions are allowed in the {· · · }. Two nor-
mal series (Gi)s

i�0, (Hi)t
i�0 of G are called equivalent if s � t and their subquotients are

isomorphic up to permutation — surely, multiplicities are taken into account.
By a re�nement of a normal series (Gi)i , we mean a new normal series obtained by

successive insertions of the form

[· · · ⊃ Gi ⊃ Gi+1 ⊃ · · · ] −→ [· · · ⊃ Gi ⊃ H ⊃ Gi+1 ⊃ · · · ]

for some H ⊳ Gi . If, at each step, the inserted term H equals either Gi or Gi+1, the
resulting re�nement is called trivial.

Theorem 6.2.1 (Schreier). Let G be a group. Any two normal series of G have re�nements
which are equivalent to each other.
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We employ the so-called Zassenhaus Lemma or Butter�y Lemma to prove the re-
�nement theorem. Recall that given two subgroups H, K ⊂ G, we put HK � {hk : h ∈
H, k ∈ K} which is a subset of G; it is actually a subgroup when H normalizes K, that
is, when H is contained in the normalizer

NG (K) :� {g ∈ G : gK g−1 ⊂ K}
of K in G.

Lemma 6.2.2 (Zassenhaus). Fix a group G, consider its subgroups U,V and their normal
subgroups u ⊳U, v ⊳ V . We have

u(U ∩ v) ⊳ u(U ∩ V),
(u ∩ V)v ⊳ (U ∩ V)v ,

each term being a subgroup of G. Moreover, there is a natural isomorphism

u(U ∩ V)
u(U ∩ v)

≃ (U ∩ V)v
(u ∩ V)v

of groups.

Proof. Visualize the relations among various subgroups by the following rules

G

H : subgroup

G

N : normal subgroup

▽

A B

A ∩ B

HN

H N

▽

where we assume that H normalizes N . Claim: we have the diagram

U V

u(U ∩ V) (U ∩ V)v

U ∩ V

u(U ∩ v) (u ∩ V)v

u (u ∩ V)(U ∩ v) v

u ∩ V U ∩ v

▽ ▽

▽

taken from [16, p.21]; it resembles some Jedi Star�ghter rather than a butter�y.
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First, observe that U ∩ V ⊂ NG (u) ∩ NG (v), etc. Hence the terms u(U ∩ V), etc. in
the diagram are subgroups. The �rst rule of our diagrams is then obvious. It is routine
to check that

u(U ∩ v) ∩ (U ∩ V) � (u ∩ V)(U ∩ v) � (U ∩ V) ∩ (u ∩ V)v ,
u ∩ (u ∩ V)(U ∩ v) � u ∩ V,
(u ∩ V)(U ∩ v) ∩ v � U ∩ v.

Thus the third rule for our diagram (concerning intersections) also holds true. Similarly
one veri�es the fourth rule. As for the second rule concerning normal subgroups, one
infers from v⊳V that U∩v⊳U∩V , therefore u(U∩v)⊳u(U∩V); in the same manner
we get (u ∩ V)v ⊳ (U ∩ V)v, Taking intersection yields (u ∩ V)(U ∩ v) ⊳ U ∩ V . The
claim is now established.

Please gaze at the two parallelograms in our diagram. The familiar isomorphism
theorems in group theory give isomorphisms

u(U ∩ V)
u(U ∩ v)

(U ∩ V)v
(u ∩ V)v

U ∩ V
(u ∩ V)(U ∩ v)

≃ ≃

and this completes the proof. �

Proof of Theorem 6.2.1. Consider two normal series (Gi)s
i�0 and (H j)t

j�0. For each 0 ≤ i ≤
s, 0 ≤ j ≤ t, we de�ne

Gi , j :� Gi+1(H j ∩ Gi),
H j,i :� (Gi ∩ H j)H j+1.

Look at Gi , j �rst. One may check that Gi , j is a subgroup, Gi , j+1 ⊳ Gi , j and that

Gi ,0 � Gi+1(G ∩ Gi) � Gi , Gi ,s+1 � Gi+1.

In fact, these assertions are implied by Lemma 6.2.2 (see below). Hence we obtain a
re�nement of (Gi)s

i�0:

G :�
[· · · ⊃ Gi � Gi ,0 ⊃ Gi ,1 ⊃ · · ·Gi ,s ⊃ Gi ,s+1 � Gi+1 ⊃ · · · ] .

Similarly, H j,i gives a re�nement of (H j)t
j�0, which we denote asH . For every given

pair (i , j), take u :� Gi+1, U :� Gi and v :� H j+1 and V :� H j in Lemma 6.2.2 to deduce
that

Gi , j

Gi , j+1
�

u(U ∩ V)
u(U ∩ v)

≃ (U ∩ V)v
(u ∩ V)v

�
H j,i

H j,i+1
.

When (i , j) varies, each subquotient of G (resp. H ) appears exactly once on the left
(resp. right) hand side. Hence G is equivalent toH as asserted. �
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6.3 Jordan-Hölder theorem
We continue to work with groups.

De�nition 6.3.1. Assume G , {1}. A composition series of G is a normal series (Gi)s
i�0

with Gi ) Gi+1 and Gi/Gi+1 simple (i.e. has no normal subgroups except {1} and
Gi/Gi+1). The subquotients of a composition series are called the composition factors
or Jordan-Hölder factors of G, denoted by JH(G) as a set with multiplicities.

Note that not every G admits a composition series (eg. the additive group �). The
use of de�nite article “the” for JH(G) is justi�ed by the next result.

Theorem 6.3.2. Let G be a group admitting composition series. Then any two composition
series of G are equivalent.

Proof. Observe that a composition series has no non-trivial re�nement and apply The-
orem 6.2.1. �

Exercise 6.3.3. Show that the additive groups �/2� × �/2� and �/4� have the same
Jordan-Hölder factors, namely {�/2�,�/2�}, but they are not isomorphic.

Now switch to the category of R-modules. In all the de�nitions and arguments
above, we

⋆ change groups into R-modules;

⋆ change normal subgroups into submodules — this greatly simpli�es the argu-
ments;

⋆ the normal series are now replaced by a descending chain M � M0 ⊃ · · · ⊃ Ms+1 �

{0} of submodules, often called a �ltration of M;

⋆ change the product of two subgroups HK into the sum of submodules M + N ;

⋆ the simple modules now replace the rôle of simple groups in the de�nition of
composition series of an R-module.

The isomorphisms in Lemma 6.2.2 and Theorem 6.2.1 now arise from appropriate
isomorphism theorems in module theory. We omit the details.

Lemma 6.3.4. An R-module M , 0 admits a composition series if and only if M is both
noetherian and artinian.

Such modules are also said to be of �nite length.

Proof. Evidently, any simple module is both noetherian and artinian. Assume that M �

M0 ⊃ · · · ⊃ Ms+1 � {0} is a composition series of M. Arguing recursively on the short
exact sequences

0→ Mi+1 → Mi →
simple︷    ︸︸    ︷

Mi/Mi+1 → 0

we see that each Mi is noetherian and artinian, thus so is M � M0.
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Conversely, assume M both noetherian and artinian. Let S be the set of proper
submodules of M. Put M0 :� M. Since M0 is noetherian, there exists a maximal element
M1 ∈ Swith respect to inclusion; this is equivalent to the simplicity of M0/M1. Since M1
inherits the noetherian property, the same procedure can be iterated whenever M1 ,
{0} and we deduce a descending chain

M � M0 ) M1 ) · · ·

of R-modules, in which each Mi/Mi+1 is simple. Since M is artinian, this procedure
must terminate, i.e. eventually Ms+1 � {0} for some s ≥ 0. Thus we obtain a composition
series of M. �

Retain the notation JH(M) for the set with multiplicities of Jordan-Hölder factors
of M.

Exercise 6.3.5. Let 0 → M′ → M → M′′ → 0 be an exact sequence such that M has a
composition series. Show that JH(M) � JH(M′) ∪ JH(M′′) (with multiplicities).

It is of utmost importance in algebra to know the manner how a module is assem-
bled from smaller pieces via exact sequences. In view of the preceding result, Jordan-
Hölder factors are of very limited use for this purpose!

Exercise 6.3.6. Describe the Jordan-Hölder factors of �nite abelian groups in terms of
their classi�cation theorem.

Remark 6.3.7. The notions of simple objects, Jordan-Hölder factors, etc. can be formu-
lated in a broader categorical context (eg. for sheaves on suitable spaces).

6.4 Direct sum decompositions
Throughout this section, M stands for a nonzero R-module, so that EndR (M) is a
nonzero ring.

We have discussed the decompositions of an R-module M into the “internal direct
sum”

⊕
i∈I Mi of a family of submodules (Mi)i∈I : recall that this means the natural

homomorphism
⊕

i∈I

Mi −→
∑

i∈I

Mi

(xi)i∈I 7−→
∑

i∈I

xi

is an isomorphism. This admits a ring-theoretic interpretation.

De�nition 6.4.1. Let S be a ring. An element s ∈ S is called an idempotent if s2 � s. In
this case, 1 − s is also an idempotent since (1 − s)2 � 1 − 2s + s2 � 1 − s, and we have
s(1 − s) � 0.
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To a decomposition M �
⊕

i∈I Mi as above, we associate the endomorphism

ei : M −→ M∑

j∈I

x j 7−→ xi

in EndR (M), for each i ∈ I. The following conditions are then satis�ed:

(i) the sum (possibly in�nite)
∑

i∈I ei makes sense in EndR (M), i.e. for all x we have
ei (x) � 0 for all but �nitely many i ∈ I;

(ii) furthermore,
∑

i∈I ei equals the identity endomorphism 1 in EndR (M);

(iii) ei is an idempotent for each i;

(iv) eie j � 0 if i , j.

Conversely, given a family of idempotents (ei)i∈I with the conditions above, we set

Mi :� im(ei) ⊂ M, i ∈ I .

Then M �
⊕

i∈I Mi . Indeed, (i) and (ii) imply M �
∑

i∈I Mi ; if x �
∑

i xi with xi ∈ Mi ,
then (iii) and (iv) imply that xi is uniquely determined by xi � ei (x). The following
result is now clear.

Proposition 6.4.2. Fix a set I of indexes. The recipe above furnishes a bijection between
⋆ families of submodules (Mi)i∈I with M �

⊕
i∈I Mi , and

⋆ families of idempotents of EndR (M) satisfying (i)–(iv) above.
A direct summand Mi equals M (resp. 0) if and only if ei � 1 (resp. ei � 0).

De�nition 6.4.3. An R-module M is called decomposable if there exists a decomposition
M � M1 ⊕M2 with M1, M2 both nonzero; otherwise we say M is indecomposable.

Example 6.4.4. The �-module �/4� is indecomposable but not simple.

Proposition 6.4.5. An R-module M is indecomposable if and only if the only idempotents in
EndR (M) are 0 and 1.

Proof. Decompositions M � M1 ⊕ M2 correspond to pairs of idempotents of the form
{e , 1 − e}. �

The so-called Fitting decomposition below will play a crucial rôle. Recall that an ele-
ment a in a ring is called nilpotent if aN � 0 for some N ∈ �≥1.

Lemma 6.4.6 (Fitting). Let M be an R-module, M , 0, which is both noetherian and artinian.
For every u ∈ EndR (M), there exists a canonical decomposition

M � im(u∞) ⊕ ker(u∞)

such that each summand is u-stable, and
⋆ u |im(u∞) is an isomorphism,
⋆ u |ker(u∞) is nilpotent.
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Proof. Consider the chains

im(u) ⊃ im(u2) ⊃ im(u3) ⊃ · · · ,
ker(u) ⊂ ker(u2) ⊂ ker(u3) ⊂ · · · .

By our hypothesis, they stabilize to submodules im(u∞) and ker(u∞), respectively.
Let us show im(u∞) ∩ ker(u∞) � 0. Take n ≫ 0 so that ker(un) � ker(u∞) and

im(un) � im(u∞). Write x ∈ im(u∞) as x � un (yn) for some yn ∈ M. If x ∈ ker(un) �

ker(u∞), then un (x) � u2n (yn) � 0, so yn ∈ ker(u2n) � ker(u∞) � ker(un), thus x � 0.
Next, retain the assumption that n ≫ 0 so that everything stabilizes at n. Given

x ∈ M, choose y ∈ M with un (x) � u2n (y) — this is always possible. Then

x � x − un (y)︸      ︷︷      ︸
∈ker(un )

+un (y),

from which we conclude M � im(u∞) + ker(u∞). The direct sum decomposition fol-
lows.

Since im(u∞) ∩ ker(u) ⊂ im(u∞) ∩ ker(u∞) � 0, we have u |im(u∞) injective, whilst
u |im(u∞) is surjective by de�nition. Hence u |im(u∞) is an isomorphism. The nilpo-
tency of u |ker(u∞) is evident. �

6.5 Krull-Remak-Schmidt theorem
Our objective is to address the uniqueness of the direct sum decompositions into in-
decomposables, under certain �niteness conditions. The history of such results can be
traced back to Azumaya (1950), Krull (1925), Schmidt (1913), Remak (1911) and Wed-
derburn (1909).

De�nition 6.5.1. Call a ring S local if S r S× is a two-sided ideal of S.

Exercise 6.5.2. Show that a commutative ring R is local if and only if there is a unique
maximal ideal m of R; in this case we have m � R r R×.

Proposition 6.5.3. Let M be an indecomposable R-module which is artinian and noetherian.
Then

(i) every f ∈ EndR (M) is either nilpotent or invertible,

(ii) EndR (M) is local in the sense above.

Proof. To prove (i), it su�ces to apply Lemma 6.4.6 to f . The assertion (ii) amounts to
showing that the nilpotent elements form a two-sided ideal of EndR (M).

Let u be nilpotent, u , 0 and v ∈ EndR (M), we claim that uv and vu are both non-
invertible. Choose n ∈ �≥0 such that un , 0, un+1 � 0. The endomorphism uv (resp.
vu) cannot be invertible as un (uv) � 0 (resp. (vu)un � 0). The claim follows.

It remains to show that u1 + u2 is non-invertible when u1, u2 are both nilpotent. If
not, put

vi :� ui (u1 + u2)−1, i � 1, 2
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so that v1 + v2 � 1. By the previous paragraph v1 and v2 are both nilpotent, thus
v1 � 1 − v2 can be inverted via

(1 − v2)−1
� 1 + v2 + v2

2 + v3
2 + · · · (�nite sum!)

which contradicts the non-invertibility of v1. We conclude that the nilpotent elements
in EndR (M) form a two-sided ideal. �

Lemma 6.5.4. Let M, N be R-modules. Assume M , 0 and N indecomposable. If u ∈
HomR (M,N), v ∈ HomR (N,M) are such that vu ∈ EndR (M) is invertible, then u, v are
both isomorphisms.

Proof. Set e � u(vu)−1v ∈ EndR (N). We have

e2
� u(vu)−1vu(vu)−1v � u(vu)−1v � e ,

i.e. e is an idempotent. Since N is indecomposable, either e � 1 or e � 0. On the other
hand,

(vu)−1veu � (vu)−1vu(vu)−1vu � 1 ∈ EndR (M)

thus we must have e � 1. Therefore u has a right inverse (vu)−1v. Since u also has a left
inverse (vu)−1v, we conclude that u is an isomorphism. Consequently v � (vu)u−1 is
an isomorphism as well. �

Theorem 6.5.5 (Krull-Remak-Schmidt). Let M , 0 be an R-module that is noetherian and
artinian. There exists a decomposition

M � M1 ⊕ · · · ⊕Mr , r ∈ �≥1

into indecomposable submodules. Moreover, the integer r is unique and the indecomposable
summands Mi are unique up to isomorphisms and permutations.

Proof. Firstly, we let ℓ(M) ∈ �≥1 denote the cardinality of JH(M), taking multiplicities
into account; this is well-de�ned by Lemma 6.3.4. If M � M1 ⊕ M2 with M1,M2 ,
0, then ℓ(M1), ℓ(M2) < ℓ(M). By induction on ℓ(M), we derive the existence of a
decomposition into indecomposables.

Suppose M � M1 ⊕ · · · ⊕ Mr and M � N1 ⊕ · · · ⊕ Ns are two decompositions into
indecomposables. We shall argue by induction on max{r, s}. Assume s ≥ r. Denote
the idempotents furnished by Proposition 6.4.2 as

ei : M ։ Mi ֒→ M,

u j : M ։ N j ֒→ M,

respectively. We contend that upon a permutation of the indexes, we have M1 ≃ N1.
Set v j :� e1u j and w j :� u je1 for j � 1, . . . , s. We have im(v j) ⊂ M1 and im(w j) ⊂ N j .

Moreover,
s∑

j�1
v j w j �

s∑

j�1
e1u ju je1 � e1

*.,
s∑

j�1
u j

+/- e1 � e2
1 � e1.
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Note that e1 |M1 � idM1 . Upon restricting the displayed formula to M1, Proposition 6.5.3
implies that (v jw j) |M1 ∈ EndR (M1) is invertible for some 1 ≤ j ≤ s; it may even be
arranged that j � 1 upon renumbering the indexes. Therefore, Lemma 6.5.4 implies
that v1 |N1 : N1 → M1 and w1 |M1 : M1 → N1 are both isomorphisms.

The next step is to “cancel out” M1 and N1. If M � N1, then r � s � 1 and we are
done. Assume s > 1. Notice that v1 |N1 � e1 |N1 : N1 → M1 is an isomorphism, which
implies that

N1 ∩
∑

i>1
Mi � N1 ∩ ker(e1) � 0,

and
M � N1 + ker(e1) � N1 +

∑

i>1
Mi .

Hence M � N1 ⊕
⊕

i>1 Mi , from which we see M/N1 is isomorphic to both
⊕

1<i≤r Mi

and
⊕

1< j≤s N j , and we can argue by induction. �

We refer to [15, §19] for further rami�cations and examples of the Krull-Remak-
Schmidt theorem.



LECTURE 7

SEMISIMPLE RINGS

The following convention is particularly useful in the study of modules. Let M,N be
left R-modules. We can let the elements of Hom(M,N) acts on M on the right, that is,
ϕ(m) � mϕ for m ∈ M and ϕ ∈ Hom(M,N). The R-linearity of homomorphisms then
takes the elegant form

r(mϕ) � (rm)ϕ, r ∈ R.

The same applies, of course, to the endomorphism ring End(M). In this setting the
multiplication in End(M) satis�es m(ϕψ) � (mϕ)ψ; it is opposite to the usual compo-
sition ϕ ◦ ψ. Similarly, for a right R-module M the endomorphism ring End(M) acts
on M on the left. In any case, the convention will be clear according to the context.

The ideals in a ring are to be multiplied in the following manner: let a and b be left
ideals, de�ne ab to be the subset consisting of �nite sums

∑
i xi yi , where xi ∈ a and

yi ∈ b. Then ab is still a left ideal and the multiplication so de�ned is associative. The
same rule applies to right ideals and two-sided ideals as well.

7.1 Wedderburn-Artin theory for semisimple rings
Our main references are [12, 16, 15].

De�nition 7.1.1. A ring R is called simple if it has no two-sided ideals except {0} and
R itself.

For example, division rings are simple. Before discussing the structure theory of
simple rings, let us see some examples �rst.

Lemma 7.1.2. Let R be a ring and n ∈ �≥1. For any two-sided ideal a of R, the set Mn (a) is
a two-sided ideal of Mn (R). Moreover, a 7→ Mn (a) sets up a bijection

{
two-sided ideals of R

} ∼→ {
two-sided ideals of Mn (R)

}
.

Proof. The �rst assertion and the injectivity of a 7→ Mn (a) are evident. As to the surjec-
tivity, let I be a two-sided ideal of Mn (R). Set

a :�
{
r ∈ R : ∃(xi j) ∈ I , r � x11

}
.
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One checks that a is a two-sided ideal of R. For every 1 ≤ i , j ≤ n, let Ei , j denote
the matrix with 1 at the (i , j)-entry, and zero elsewhere. Hence for every X � (x jk) ∈
Mn (R), we have

Ei , jXEk ,l � x jkEi ,l .

It follows that for X ∈ I, we have x jkE11 � E1 jXEk1 ∈ I, thereby x jk ∈ a for every
index ( j, k). Thus I ⊂ Mn (a). Conversely, let X ∈ Mn (a) and �x an index (il); by
assumption there exists Y ∈ I with y11 � xil , hence

xilEil � y11Eil � Ei1YE1l ∈ I .

Hence I � Mn (a), proving the asserted surjectivity. �

Note that the upshot of the proof is to move the matrix entries around by row and
column operations.

Corollary 7.1.3. Let D be a division ring, then Mn (D) is a simple ring.

De�nition 7.1.4. A ring R is called left (resp. right) semisimple if R is semisimple as a
left (resp. right) R-module.

This is a temporary notion: the left and right versions will be shown to be equivalent
in the Corollary 7.1.13, as a consequence of the Wedderburn-Artin theorem. We shall
simply say that R is a semisimple ring afterwards.
Remark 7.1.5. Simple rings are not necessarily semisimple. Cf. Proposition 7.2.2.

De�nition 7.1.6. A minimal left (resp. right) ideal is a nonzero left (resp. right) ideal
containing no proper nonzero left (resp. right) ideals.

Lemma 7.1.7. Let R be a left (resp. right) semisimple ring, then R is a left (resp. right) artinian
and noetherian R-module. Equivalently, R has composition series as a left (resp. right) R-
module.

Proof. It su�ces to consider the left case. By semisimplicity, write R �
∑

i∈I ai as a direct
sum of minimal left ideals, where I is some indexing set. There exists a �nite subset
I0 ⊂ I such that 1 ∈⊕

i∈I0
ai . Since R � R · 1, we conclude that I � I0 is �nite. The left

R-module R has a composition series, hence is both artinian and noetherian. �

As before, we begin by looking at the case of matrix algebras closely.

Proposition 7.1.8. Let D be a division ring, R :� Mn (D). Then

1. R is a simple and left semisimple ring;

2. there exists a unique simple left R-module V up to isomorphism; moreover, R acts faith-
fully on V (that is, R ֒→ Endab.grp(V)) and R ≃ V⊕n as left R-modules;

3. we have End(RV) ≃ D as rings.

Needless to say (we do say it anyway), the same holds if “left” is replaced by “right”
everywhere.
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Proof. We have seen the simplicity of R. Moreover, R is a D-vector space of dimension
n2, hence R is left (resp. right) artinian and noetherian. Now let V be Dn (identi�ed
to the column matrices) on which R � Mn (D) acts by matrix multiplication on the left,
and D acts on the right by scalar multiplication. Observe that V is a (R,D)-bimodule.

By linear algebra over D, one readily checks that
⋆ V is a simple, faithful left R-module;
⋆ as a left R-module, we have R �

⊕n
i�1 Vi ≃ V⊕n , where Vi is the R-submodule

consisting of the matrices whose entries vanish o� the i-th column.
Every simple left R-module is cyclic, that is, of the form R/m with m a maximal

left ideal of R. Such an R-module must appear in the composition series of RR. By the
Jordan-Hölder theorem and the preceding results, the only candidate is V . Now we
have proved parts (1) and (2) of the proposition.

To prove (3), de�ne the homomorphism of rings

∆ :D −→ End(RV)
d 7−→ [v 7→ vd].

It remains to show that ∆ is an isomorphism. It is clear that V is clear as a right
D-module, hence ∆ is injective. Let f ∈ End(RV) and write

*........,

1

0
...

0

+////////-
f �

*........,

d

∗
...

∗

+////////-
, d ∈ D.

We leave it to the reader to check that

*....,

a1
...

an

+////-
f �

*....,

a1 0 · · · 0
...

...

an 0 · · · 0

+////-
*.....,

d
...
...

+/////-
�

*....,

a1d
...

an d

+////-
�

*....,

a1
...

an

+////-
∆(d)

for all a1, . . . an ∈ D. This amounts to f � ∆(d), whence the surjectivity of ∆. �

Lemma 7.1.9. Let R1, . . . , Rm be left semisimple rings, then so is R � R1 × · · · × Rm .

Proof. For every 1 ≤ i ≤ m, the left semisimplicity of Ri amounts to a decomposition
Ri �

⊕
j ai j into minimal left ideals; we view each Ri as a two-sided ideal of R. Hence

R �
⊕

i , j ai , j is still a decomposition into minimal left ideals (of R), which implies the
left semisimplicity of R. �

By Proposition 7.1.8 and this lemma, rings of the form Mn1 (D1) × · · · ×Mnr (Dr ) are
left semisimple, where D1, . . . ,Dr are division rings. The Wedderburn-Artin theorem
asserts that this is the only case.
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Figure 7.1: Photos of N. Jacobson (1910-1999) taken from [4].

Theorem 7.1.10 (Wedderburn-Artin [27, 2]). Let R be a left semisimple ring. There exists a
direct product decomposition

R � Mn1 (D1) × · · · ×Mnr (Dr )

for some n1, . . . , nr ∈ �≥1 and division rings D1, . . . ,Dr , for some r. Such a decomposition
is unique up to isomorphism and permutation of the data (ni ,Di). Conversely, every R of this
form is left semisimple.

Furthermore, up to isomorphism there are exactly r left simple modules of R.

Proof. We just observed the converse direction. Assume that R is left semisimple. By
Lemma 7.1.7, one can write

RR �

r⊕

i�1
V⊕ni

i

where V1, . . . ,Vr are distinct (up to isomorphism) simple left R-modules.
Moreover, the Jordan-Hölder theorem is applicable to RR and implies

(i) such a decomposition is unique up to isomorphism and permutation,
(ii) every simple left R-module is a quotient of R by a maximal left ideal, hence iso-

morphic to some Vi .
Set Di :� End(Vi) for i � 1, . . . , r, which is a division ring by Schur’s lemma. We

have

End(RR) �
r⊕

i�1
End(V⊕ni

i ) �
r⊕

i�1
Mni (Di).

Furthermore, we have an isomorphism of rings

R
∼−→ End(RR)

x 7−→ [r 7→ rx]

the inverse being ϕ 7→ ϕ(1). Consequently, R ≃∏r
i�1 Mni (Di).

From Proposition 7.1.8, the simple left R-modules are exactly V1, . . . ,Vr . The unique-
ness part follows from Jordan-Hölder theorem. �
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Remark 7.1.11. The same arguments yield a variant for right semisimple rings. One may
also argue using the concept of opposite rings as follows.

R is right semisimple ⇐⇒ Rop is left semisimple

⇐⇒ Rop ≃
r∏

i�1
Mni (Di)

⇐⇒ R ≃
r∏

i�1
Mni (Di)op,

the last decomposition being unique up to permutation and isomorphism. And one
observes that taking transpose A 7→ tA of matrices yields a ring isomorphism

Mni (Dop
i )

∼→ Mni (Di)op.

Also note that Di is a division ring if and only if Dop
i is. This gives the structure theorem

for right semisimple rings.

Exercise 7.1.12. Justify the preceding arguments by showing that for any ring S and
n ∈ �≥1, the transpose A 7→ tA induces a ring isomorphism Mn (S)op ≃ Mn (Sop).

Corollary 7.1.13. A ring R is left semisimple if and only if it is right semisimple.

Proof. The structure theorems for left and right semisimple rings take the same form.
Done. �

Thus it is legitimate to speak of semisimple rings. The uniquely determined com-
ponents Mni (Di) are two-sided ideals of R, called the simple components of R.

Exercise 7.1.14. Let k be a perfect �eld and W be a �nite-dimensional k-vector space.
Given a linear transformation T ∈ Endk (W ), we let k[T] be the k-subalgebra of Endk (W )
generated by T. Show that the k[T]-module W is semisimple if and only if T is diago-
nalizable over an algebraic closure k̄ of k.

Proposition 7.1.15. A ring R is semisimple if and only if every left (or right) R-module M is
semisimple.

Proof. Every left R-module M is is a homomorphic image of a direct sum (RR)⊕X of
RR, for some indexing set X. Indeed, we may take X to be a set of generators of M (eg.
X � M) so that the natural homomorphism

(RR)⊕X −→ M

(rx)x∈X 7−→
∑

x∈X

rx · x

is surjective. It follows that M inherits the semisimplicity when R is semisimple. The
other direction is trivial. �
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7.2 Double centralizer property
Let R be a simple ring and a be a nonzero left ideal of R. One can view a as a left
R-module. De�ne the ring

D :� End(Ra)

which acts on a on the right, according to our conventions. There is a natural ring
homomorphism

f : R −→ End(aD)
r 7−→ [a 7→ ra].

Theorem 7.2.1 (Rie�el). Suppose that R is a simple ring and a is as above, then f : R
∼→

End(aD).

The assertion is sometimes called the double centralizer property in the literature.

Proof. Since R is simple, f must be injective. To show the surjectivity, let r ∈ a and
h ∈ E :� End(aD). Unfolding the de�nitions, one sees that

h · f (r) � f (h(r)) in E.

Indeed, both elements send a ∈ a to h(ra) (note that a can be regarded as an element
of D, acting by right multiplication on a).

Since R is simple and a , {0} we have

1 �

m∑

i�1
ri ti

for some r1, . . . , rm ∈ a and t1, . . . , tm ∈ R. As f is a ring homomorphism, for every
h ∈ E the preceding discussion yields

h � h · f (1) �
m∑

i�1
h f (ri) f (ti) �

∑

i�1m

f (h(ri)) f (ti) ∈ im( f ).

Hence f is surjective. �

As an application, we deduce an alternative approach to the Wedderburn-Artin the-
ory for simple rings, with some re�ned information.

Proposition 7.2.2. Let R be a simple ring. The following conditions are equivalent.

1. RR is a left artinian.

2. R has a minimal left ideal.

3. R ≃ Mn (D) for some n ∈ �≥1 and some division ring D.

4. R is left semisimple.
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Proof. (1)⇒ (2) is an easy application of the descending chain condition. Let us prove
(2) ⇒ (3). Let a be a minimal left ideal, then Ra is a simple R-module. By Theorem
7.2.1, we have R ≃ End(aD) where D :� End(Ra) is a division ring by Schur’s lemma.
Therefore aD is a right D-vector space and it remains to show that dimD a is �nite. Let
I be the subset of D-linear transformations in End(aD) of �nite rank. By linear algebra,
I is a nonzero two-sided ideal, hence I � End(aD) and dimD a is �nite by the simplicity
of R.

We have derived that (3) ⇒ (4) in Proposition 7.1.8. Finally, (4) ⇒ (1) by Lemma
7.1.7. �

The same statements hold if “left” is replaced by “right” everywhere.

7.3 Another approach to the Wedderburn-Artin Theorem
We shall present this approach as a series of exercises. Only the “left” case is consid-
ered.
De�nition 7.3.1. Let R be a ring. Let a be a minimal left ideal of R, de�ne

Ba :�
∑

a′≃a
a′ ⊂ R

where a′ ranges over the minimal left ideals of R which are isomorphic to a as R-
modules.
Exercise 7.3.2. Show that

1. Ba is a two-sided ideal of R;

2. if a, b are non-isomorphic minimal left ideals of R, then Ba · Bb � {0}.
Hint. For (1), note that for every r ∈ R, there is a natural surjection a ։ ar of left

R-modules; use this to show ar ⊂ Ba . For (2) it su�ces to show ab � {0}. If it is not the
case, there exists x ∈ b such that ax , {0}; deduce that a ≃ ax � b using minimality.

Next, recall that a left semisimple ring R can be written as a direct sum
⊕
a a where

a ranges over the minimal left ideals (that is, simple R-submodules). To each a in the
sum is associated an idempotent e ∈ R so that a � Re.
Exercise 7.3.3. Let R be a left semisimple ring. By the preceding construction we have
R �

⊕
a Ba , where a ranges over isomorphism classes of minimal left ideals.

1. Show that this is actually a �nite direct sum.

2. Show that each Ba is a simple and left artinian ring.
Hint. For (1), look at the decomposition of 1 ∈ R. To show the simplicity of Ba in (2),

let I be a two-sided ideal of Ba , hence of R. Then I contains some minimal left ideal a′
of R; there exists an isomorphism ϕ : a

∼→ a′ between left R-modules. Show that a′ ⊂ I
using ϕ(a) � ϕ(ae) � aϕ(e) ⊂ I where a � R · e for some idempotent e ∈ R.
Exercise 7.3.4. Deduce the Wedderburn-Artin Theorem 7.1.10 from Proposition 7.2.2
and the Ba-construction above.

Hint. Now we have a �nite decomposition R �
∏
a Ba into simple, left artinian rings.
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7.4 Jacobson radicals
Jacobson introduced the radical rad(R) of a ring in order to extend the Wedderburn-
Artin structure theory to rings without minimum conditions.

De�nition 7.4.1. Let R be a ring, we write

rad(R) :�
⋂

m:maximal left ideals
m

and call it the left Jacobson radical of R. Similarly we may de�ne the right Jacobson
radical of R.

As in the case of semisimplicity, the left and right Jacobson radicals will turn out to
be the same (Proposition 7.4.5). In what follows we will only discuss the left Jacobson
radical.

Lemma 7.4.2. Let y ∈ R, the following statements are equivalent:

1. y ∈ rad(R);

2. 1 − x y admits a left inverse for every x ∈ R;

3. yM � {0} for every simple left R-module M.

Proof. (1)⇒ (2). If there exists x ∈ R such that 1 − x y is not left-invertible, then Zorn’s
lemma implies that there exists a maximal left ideal m such that R(1 − x y) ⊂ m. Since
y ∈ rad(R) ⊂ m, we will have 1 ∈ m which is absurd.

(2)⇒ (3). Let M be a simple left R-module. If m ∈ M satis�es ym , 0, then Rym �

M by the simplicity of M, hence there exists x ∈ R such that x ym � m. Equivalently,
(1 − x y)m � 0. This contradicts the left invertibility of 1 − x y.

(3) ⇒ (1). For every maximal left ideal m, we have y(R/m) � {0} by assumption,
hence y ∈ m. Varying m gives the assertion. �

Before stating the next result, recall that for a left R-module M, we denote its anni-
hilator as

ann(M) :� {r ∈ R : rM � 0},
which is a two-sided ideal.

Corollary 7.4.3. We have rad(R) �
⋂

M ann(M), where M ranges over the simple left R-
modules. In particular, rad(R) is a two-sided ideal of R.

As an aside, note that for the simple module M :� R/m in the proof above, ann(M)
is a proper subset of m in general, when R is noncommutative.

Lemma 7.4.4. Let y ∈ R, then y ∈ rad(R) if and only if for every x , z ∈ R, we have 1−x yz ∈
R×.
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Proof. If 1 − x yz is invertible for all x , z, then 1 − x y is left invertible for all x, hence
y ∈ rad(R) by the previous lemma. Conversely, let y ∈ rad(R). For all z ∈ R, we have
yz ∈ rad(R) since rad(R) is a two-sided ideal. Therefore 1− x yz is left invertible for all
x ∈ R, that is,

∃u ∈ R, u(1 − x yz) � 1.

The element u is right invertible. However, x yz ∈ rad(R); as before, u � 1 + ux yz
is left invertible. Consequently u ∈ R× and thus 1 − x yz ∈ R×. �

Proposition 7.4.5. The left and right Jacobson radicals coincide.

Proof. Note the left/right symmetry of the characterization of rad(R) in the previous
lemma. �

Exercise 7.4.6. Show that rad(R) is the largest two-sided ideal a of R satisfying 1 + a ∈
R×. This characterization is extensively used in commutative algebra.

De�nition 7.4.7. A ring R is called semiprimitive (or: Jacobson semisimple) if rad(R) �
{0}.

An extrinsic characterization of semiprimitivity in terms of R-modules will be given
later. The relation between semiprimitivity and semisimplicity will be deferred to the
next lecture.

Proposition 7.4.8. For every two-sided ideal a of R contained in rad(R), we have

rad(R/a) � rad(R)/a.

In particular, R/rad(R) is semi-primitive.

Proof. Immediate from the de�nition, since any maximal left ideal of R must contain
a. �

Proposition 7.4.9. Let R̄ :� R/rad(R). The natural map{
simple left R̄-modules

}
/ ≃−→ {

simple left R-modules
}
/ ≃

is bijective.

Proof. Recall that rad(R) annihilates every simple left R-module. �

Next, we shall discuss the relation between the Jacobson radical and nilpotence in
R.

De�nition 7.4.10. Let a be a left (resp. right) ideal of R. We say

⋆ a is nil, if every x ∈ a is nilpotent, that is, xn(x) � 0 for some n(x) ∈ �≥1;

⋆ a is nilpotent, if an � {0} for some n ∈ �≥1.

“Nilpotent” implies “nil”, but the converse is not always true. See Corollary 7.4.14,
however.
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Exercise 7.4.11. Show that a �nite sum of nilpotent left (resp. right) ideals of R is still
nilpotent.

Lemma 7.4.12. Let a be a left (resp. right) ideal of R. If a is nil, then a ⊂ rad(R).

Proof. The proof is well-known. It su�ces to consider the left case. Let y ∈ a and x ∈ R.
Then

(1 − x y)−1
�

∞∑

i�0
(x y) i .

Indeed, this can be veri�ed by elementary algebra; the sum is �nite since x y ∈ a is
nilpotent. �

Theorem 7.4.13. Let R be a left artinian ring, then rad(R) is the largest nilpotent left ideal; it
is also the largest nilpotent right ideal.

Proof. Set J :� rad(R). In view of the preceding lemma, it su�ces to show that J is
nilpotent.

We have a descending chain J ⊃ J2 ⊃ · · · , which must stabilize, say Jk � I for
some left ideal I whenever k ≫ 0. Suppose that I , {0}. Again, the descending chain
condition yields a minimal element a0 in

{a : left ideal such that Ia , 0}.
Choose a ∈ a0 such that Ia , {0}. Since I2 � I by the construction of I, we have

I(Ia) � I2a � Ia , {0}, thus Ia � a0 by minimality.
All in all, there exists y ∈ I ⊂ J such that a � ya, that is, (1 − y)a � 0. However

1 − y ∈ R×, thus a � 0, a contradiction. �

Corollary 7.4.14. Let R be a left artinian ring, then every left or right nil ideal a is nilpotent.

Proof. The Theorem asserts that rad(R) is nilpotent, hence so is the smaller ideal a
(Lemma 7.4.12). �



LECTURE 8

SEMIPRIMITIVE RINGS

8.1 Semiprimitivity versus semisimplicity
We keep the conventions of the previous lecture and follow Lam’s book [15] closely in
what follows.

Recall that we have de�ned semisimple rings and semiprimitive rings in the pre-
vious lecture, the latter also known as Jacobson semisimple or J-semisimple rings in the
literature. The following result shows that “semisimple” is equivalent to “semiprimi-
tive + left artinian”.

A left (resp. right) ideal a of R is called principal if there exists x ∈ R such that a � Rx
(resp. xR).

Proposition 8.1.1. Let R be a ring. The following statements are equivalent.

1. R is semisimple.

2. R is semi-primitive and left artinian.

3. R is semi-primitive and satis�es descending chain condition on principal left ideals.

Proof. (1) ⇒ (2). We have seen that semisimple rings are left artinian. On the other
hand, there exists a left ideal a such that R � rad(R) ⊕ a. If rad(R) , {0}, then a , R
and there exists a maximal left idealm ⊃ a. But we also havem ⊃ rad(R), hencem � R
which is absurd.

(2)⇒ (3). Trivial.
(3)⇒ (1). Our assumption has two consequences:

(i) Every left ideal contains a minimal ideal — this follows from the DCC on principal
left ideals. Note that minimal ideals must be principal.

(ii) Every minimal left ideal I is a direct summand. Indeed, there exists a maximal left
ideal m 2 I since rad(R) � {0}, hence I +m � R and I ∩m � {0} (by minimality),
i.e. R � I ⊕ m.

81
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Now take a minimal left ideal a1 ⊂ R and write R � a1 ⊕ b1. If b1 � {0} then R
is semisimple as a left R-module and the proof terminates. Otherwise, there exists a
minimal left ideal

a2 ⊂ b1
together with a direct sum decomposition R � a2 ⊕ c2; let pr2 : R ։ a2 be the corre-
sponding projection homomorphism. Set

b2 :� c2 ∩ b1 � ker[pr2 : b1 ։ a2].

One checks that b1 � a2 ⊕ b2, thus R � a1 ⊕ a2 ⊕ b2. If b2 � {0} then R is semisimple, oth-
erwise we can take a minimal a3 ⊂ b2, and so forth. Assuming that R is not semisimple,
we would get
⋆ a descending chain of left ideals R �: b0 ⊃ b1 ⊃ b2 ⊃ · · · ;
⋆ a family of minimal left ideals a1, a2, . . ., such that

ai ⊕ bi � bi−1, i ≥ 1.

Note that if an R-module is generated by a single element, then so are its homomorphic
images (the direct summands included). In particular, this applies to left ideals and we
deduce that bi is principal for each i ≥ 0. All in all, we obtain a strictly descending
chain condition of left ideals. Contradiction. �

Originally, Wedderburn de�nes the radical for �nite-dimensional algebras over a
�eld as the largest nilpotent ideal and uses it to characterize semisimplicity. His ap-
proach is easily recovered as follows.

Corollary 8.1.2. Let R be a left artinian ring. There is a largest nilpotent left (resp. right) ideal
nil(R) and R is semisimple if and only if nil(R) � {0}.
Proof. We have seen in the previous lecture that nil(R) is nothing but rad(R). Now
apply the previous result. �

Exercise 8.1.3. Check that � is semiprimitive but not semisimple.

Exercise 8.1.4. The socle of a left R-module M, denoted by soc(M), is de�ned as its
maximal semisimple submodule, i.e. the sum of the simple R-submodules of M. Show
that

1. soc(M) ⊂ {m ∈ M : rad(R)m � 0};
2. if R̄ :� R/rad(R) is left artinian, then soc(M) � {m ∈ M : rad(R)m � 0}.
To elucidate the relation between artinian and noetherian conditions, we record the

following result without proof. The reader may consult [15, (4.15)] for details.

Theorem 8.1.5 (Hopkins-Levitzki). Let R be a ring such that rad(R) is a nilpotent ideal and
that R/rad(R) is semisimple. For every left R-module M, we have

M is noetherian ⇐⇒ M is artinian.
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8.2 Intermezzo: der Nullstellensatz
We will need some dose of commutative algebra.

Let k be a �eld and R be a quotient k-algebra k[X1, . . . ,Xn]/a of the polynomial
algebra k[X1, . . . ,Xn] over k with n variables. It is essentially a consequence of Hilbert’s
Nullstellensatz that

rad(R) � nil(R) �
√
a/a

where
√
a :� { f ∈ k[X1, . . . ,Xn] : ∃m , f m ∈ a}.

For a commutative ring R, we de�ne its nilradical as the ideal

nil(R) :�
√

(0)R � {x ∈ R : x is nilpotent}.
It is well-known result in commutative algebra that nil(R) is the intersection of all prime
ideals of R, therefore nil(R) ⊂ rad(R). The Nullstellensatz amounts to the assertion

p �
⋂

m:maximal ideal ⊃p
m, ∀p : prime ideal of R,(8.1)

whenever R � k[X1, . . . ,Xn]/a as above. This result is one of the cornerstones of alge-
braic geometry. Let us deduce a generalization thereof from the theory developed so
far.

Theorem 8.2.1 (E. Snapper). Let R be a commutative ring. Then the polynomial ring R[X]
over R in one variable satis�es rad(R[X]) � nil(R[X]).

Proof. To show that nil(R[X]) ⊃ rad(R[X]), let f (X) �
∑

i aiX i ∈ rad(R[X]), then
1 + X f (X) � 1 +

∑
i aiX i+1 ∈ R[X]×. By looking at the reduction modulo p of f (X) for

every prime ideal p of R, we see that ai ∈ ⋂
p � nil(R) for all i. It remains to show that

an element of R[X] is nilpotent if its coe�cients are all nilpotent, which we leave to the
reader. �

Lemma 8.2.2. Let R ⊂ A be commutative domains such that A is �nitely generated over R as
an R-algebra. If rad(R) � {0}, then rad(A) � {0}.
Proof. We may assume that A is generated by a single element a ∈ A over R. If a is
transcendental over the �eld of fractions K :� Frac(R), the Theorem above can be ap-
plied. Let us assume that a satis�es f (a) � 0 for some f (X) �

∑n
i�0 riX i ∈ R[X] with

the smallest possible degree n. Let b ∈ rad(A). If b , 0, it satis�es g(b) � 0 for some
g(X) �

∑m
i�0 siX i ∈ R[X] with the smallest possible degree m. Since A is a domain, we

must have s0 , 0.
Using rad(R) � {0}, there exists a maximal ideal m of R such that rn s0 < m. After

localization at m, we see A′ :� A ⊗R Rm becomes a �nite Rm-module. Nakayama’s
Lemma implies that rad(Rm)A′ ( A′, thus mA ( A. Now choose a maximal ideal
mA of A containing m. We must have mA ∩ R � m, which entails s0 < mA. This is a
contradiction since s0 � −∑m

i�1 sib i ∈ rad(A). �

Theorem 8.2.3. Let R ⊂ A be commutative rings such that A is �nitely generated over R as
an R-algebra. Assume that R satis�es (8.1). The following statements hold.
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1. The ring A satis�es (8.1) as well.

2. Let m be a maximal ideal of A, then R ∩m is a maximal ideal of R.

3. If A is a �eld then so is R, and A is a �nite �eld extension over R.

Proof. Note that (8.1) (for A) is equivalent to rad(A/p) � 0 for every prime ideal p of A.
Apply the previous Lemma to the commutative domains R/R ∩ p ⊂ A/p to prove (1).

Let us prove (3). Using (1) and induction, one reduces to the case A � R[a] for some
a ∈ A. Since A is a �eld, a satis�es

∑n
i�0 ci a i � 0 for some c0, . . . , cn ∈ R with cn , 0

(otherwise A ≃ R[X]). Letm be any maximal ideal of R not containing cn , which exists
since rad(R) � 0. By the proof of the previous Lemma, mA ( A, hence m � 0. This
implies that R is a �eld and A is �nite over R.

As for (2), replace A (resp. R) by A/m (resp. R/R ∩ m) to reduce to the assertion
(3). �

Commutative rings satisfying (8.1) are called Jacobson rings or Hilbert rings in the
literature.

8.3 Primitive rings and primitive ideals
Recall that an R-module M is called faithful if the scalar multiplication induces an in-
jection R → Endab.grp(M).

Proposition 8.3.1. A ring R is semiprimitive if and only if there exists a faithful semisimple
left R-module.

Proof. If there exists a faithful semisimple left R-module M, then rad(R) ⊂ ann(M) �

{0}. Conversely, assume rad(R) � {0} and set

M :�
⊕

N :simple
N.

Then M is semisimple and ann(M) �
⋂

N ann(N) � rad(R) is zero, hence M is faithful.
�

This extrinsic characterization (i.e. in terms of the R-modules) motivates the follow-
ing de�nition.

De�nition 8.3.2. A ring R is called left (resp. right) primitive if there exists a faithful
simple left (resp. right) R-module.

Remark 8.3.3. Simple modules are nonzero by de�nition, hence left or right primitive
rings R must be nonzero as well.
Remark 8.3.4. The notion of primitivity is not left-right symmetric. Counterexamples
are not so easy to construct, however; see [5].

De�nition 8.3.5. A two-sided ideal a of R is called left (resp. right) primitive if R/a is a
primitive ring, or equivalently, if a � ann(M) for a simple left (resp. right) R-module.
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Proposition 8.3.6. We have rad(R) �
⋂
a where a ranges over left (resp. right) primitive

ideals.

Proof. Recall the left-right symmetry of rad(R) and use the property rad(R) �
⋂

ann(M)
where M ranges over the simple left (resp. right) R-modules. �

Example 8.3.7. Take V to be a right vector space over a division ring D. Assume V , {0}
and set R :� End(VD) so that V is a simple faithful left R-module, which can be easily
checked by linear algebra over D. Therefore R is a left primitive ring.
⋆ If n :� dimD V is �nite, then R ≃ Mn (D) is a left artinian simple ring which arises

in the Wedderburn-Artin theorem.
⋆ When dimD V is in�nite we get something much larger. This turns out to be the

typical case, cf. Theorem 8.5.2.

Proposition 8.3.8. Simple rings are left and right primitive.

Proof. A simple ring R (i.e. nonzero and without nontrivial two-sided ideals) must
act faithfully on every nonzero left R-module M since ann(M) is a two-sided ideal.
It remains to note that simple R-modules exist: take a maximal left ideal m and form
R/m. �

Proposition 8.3.9. Let R be a left artinian ring. Then

1. R is semisimple if and only if R is semiprimitive;

2. R is simple if and only if R is left primitive.

Proof. We have proved (1). As for (2), we have just shown one direction: simplicity
implies primitivity.

Conversely, assume that R is left primitive. Then R is semiprimitive since rad(R) �⋂
ann(M) with M ranging over simple left R-modules, and ann(M) � 0 for some sim-

ple M. By (1) it follows that R is semisimple. Now invoke the Wedderburn-Artin theo-
rem and check that if there are more than one simple components of R, then R cannot
be left primitive. �

Exercise 8.3.10. Show that a commutative primitive ring is a �eld. Hint: ann(R/m) � m
for commutative R.

8.4 Density theorems
De�nition 8.4.1. Let R and k be rings. Let V � RVk be an (R, k)-bimodule. Then E :�
End(Vk) acts on V on the left and there is a natural homomorphism R → E, given by
the left R-module structure of V .

We say that R acts densely on Vk if for every f ∈ E, n ∈ �≥1 and v1, . . . , vn ∈ V , there
exists r ∈ R such that

rvi � f (vi), i � 1, . . . , n.
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Remark 8.4.2. The etymology of “density” is as follows. We equip V with the discrete
topology and E with the coarsest topology such that for every v ∈ V , the homomor-
phism f 7→ f (v) ∈ V is continuous. Then R acts densely on Vk if and only if the natural
homomorphism

R → E

has dense image.

Lemma 8.4.3. Let V be a semisimple left R-module and k :� End(RV). Set E :� End(Vk).
Every R-submodule W ⊂ V is an E-submodule.

Proof. Use semisimplicity to write V � W ⊕W′ as R-modules, for some W′ ⊂ V , and
let e : V ։ W be the projection homomorphism. Note that e ∈ k. For every f ∈ E, we
have

f (W ) � f (We) � ( f W )e ⊂ W,

as required. �

Theorem 8.4.4 (Jacobson, Chevalley; �rst appeared in [10]). Let R be a ring, V be a
semisimple left R-module and k :� End(RV), so that V becomes an (R, k)-bimodule. Then
R acts densely on Vk .

Proof. Put E :� End(Vk) as before. Given f ∈ E and v1, . . . , vn ∈ V , we set
⋆ Ṽ :� V⊕n which is still a left R-module;
⋆ k̃ :� End(RṼ) � Mn (End(RV)) � Mn (k);
⋆ f̃ :� ( f , . . . , f ), the diagonal action of f on V⊕n ;
⋆ W̃ :� R(v1, . . . , vn) ⊂ Ṽ .

Let us check that f̃ ∈ End(Ṽk̃). Consider ũ � (u1, . . . , un) ∈ Ṽ and a matrix A �

(ai j)1≤i , j≤n ∈ Mn (k), viewed as an element of k̃. Then f̃ (ũA) is obtained by �rst forming
the product

ũA

using matrix multiplication (formally), then multiplying each entry of ũA by f from
the left. Since V is an (E, k)-bimodule, this equals ( f̃ ũ)A � ( f u1, . . . , f un)A.

The previous Lemma can thus be applied. It asserts that W̃ is stable under f̃ ∈
End(Ṽk̃), that is,

∃r ∈ R, f̃ (v1, . . . , vn) � r(v1, . . . , vn).

Thus f (vi) � rvi for i � 1, . . . , n. �

The proof above is usually attributed to N. Bourbaki.

8.5 Structure theory for primitive rings
Lemma 8.5.1. Let R,V, k , E be as in the Density Theorem 8.4.4. If the right k-module V is
�nitely generated, then the natural homomorphism ρ : R → E is surjective.

Proof. Choose a set of generators v1, . . . , vn of Vk . Let f ∈ E, there exists r ∈ R such
that rvi � f (vi) for all i by the Density Theorem 8.4.4. Hence ρ(r) � f . �
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Theorem 8.5.2. Let R be a left primitive ring, V be a faithful simple left R-module. Set k :�
End(RV), which is a division ring by Schur’s Lemma. Then R is isomorphic to a dense subring
of End(Vk) in the sense of Remark 8.4.2. Moreover,

1. if R is left artinian, then n :� dimk V is �nite and R ≃ Mn (k);

2. if R is not left artinian, then dimk V is in�nite and for every n ∈ �≥1 there exists a
subring Rn of R together with a surjective ring homomorphism Rn ։ Mn (k).

Proof. We have the natural homomorphism ρ : R → E :� End(Vk). Note that ρ is injec-
tive by the faithfulness of V . The density of ρ(R) in E is just a paraphrase of Theorem
8.4.4 and Remark 8.4.2. Hence the �rst assertion.

Assume that n :� dimk V is �nite. By Lemma 8.5.1, ρ is surjective, thus R ≃ Mn (k);
in particular R is left artinian.

Assume that dimk V is in�nite. There exists a family {vi }i∈�≥1 of k-linear indepen-
dent vectors in V . For every n ∈ �≥1, let Vn be the k-linear span of v1, . . . , vn and
put

Rn :� {r ∈ R : r(Vn) ⊂ Vn } { subring of R,
an :� {r ∈ R : r(Vn) � 0} { two-sided ideal of Rn .

We have the natural ring homomorphism ρn : Rn/an ֒→ End(Vn ,k). Furthermore, the
Density Theorem implies that ρn is actually surjective, hence Rn ։ Rn/an ≃ Mn (k).

Note that an is a left ideal of R, and an+1 ( an for all n. Thus R is not left artinian
when dimk V is in�nite. This completes the proof. �

Remark 8.5.3. The density theorem gives another proof of the Wedderburn-Artin theo-
rem for left artinian simple rings.

As for the semiprimitive rings, there is technique called subdirect products that al-
lows us to reduce some ring-theoretic questions about semiprimitive rings to the left
primitive case. For details see [15, §12]. An impressive application of this procedure is
the celebrated Jacobson-Herstein Theorem [15, (12.9)]. It asserts that a ring R is com-
mutative if and only if

∀x of the form ab − ba , a , b ∈ R, ∃n(x) ∈ �>1 such that xn(x)
� x.(8.2)

In the following exercises, we assume the validity of the Jacobson-Herstein Theorem
for division rings (see [15, (13.9)]) and derive the case for general rings.
Exercise 8.5.4. Prove the Jacobson-Herstein Theorem for left primitive rings. Hint:
show that (8.2) is satis�ed by R � Mn (k) for some division ring k if and only if n � 1
and k is a �eld, by considering the element x � E12 � E11E12−E12E11 when n > 1. Now
apply the Theorem 8.5.2 to show that a left primitive ring R satisfying (8.2) must be a
�eld.
Exercise 8.5.5. For a semiprimitive ring R, show the injectivity of the natural ring ho-
momorphism

R →
∏

a
left primitive ideals

R/a.

Deduce the Jacobson-Herstein Theorem for R from the case for the left primitive rings
R/a.
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Exercise 8.5.6. Deduce the Jacobson-Herstein Theorem in full generality. Hint: for x �

ab − ba ∈ R we have x(1 − xn(x)−1) � 0 for some n(x) > 1; on the other hand, the case
for R̄ :� R/rad(R) implies that x ∈ rad(R), hence 1 − xn(x)−1 ∈ R×.

The weaker assertion that x3 � x for all x ∈ R implies commutativity is sometimes
posed as a challenge to undergraduates by cruel professors.

8.6 The primitive spectrum
Let R be a nonzero ring with unit. De�ne

Prim(R) :� {left primitive ideals of R}.
For every two-sided ideal I of R, set

V (I) :� {a ∈ Prim(R) : a ⊃ I}.
Adopt the following notation: given an R-module M and a left ideal a of R, de�ne

aM to be the submodule consisting of linear combinations of elements of the form xm
where x ∈ a and m ∈ M.

Lemma 8.6.1. Given two-sided ideals I , J, we have V (I) ∪ V ( J) � V (I ∩ J).

Proof. The inclusion V (I) ∪ V ( J) ⊂ V (I ∩ J) is evident. Let a ∈ Prim(R) such that
a ⊃ I ∩ J. Take a simple left R-module M with ann(M) � a. If I is not contained in a,
then IM � M by the simplicity of M. Similarly, JM � M if J is not contained in a. This
would imply I J ·M � M, which is impossible since I J ⊂ I ∩ J ⊂ a. �

Exercise 8.6.2. Show that there exists a unique topological structure on Prim(R) such
that the closed subsets are precisely those V (I).

Exercise 8.6.3. For every subset S of Prim(R), show that the closure of S is given by
V (

⋂
a∈S a). Note that this property characterizes the topology on Prim(R) by Kura-

towski’s axioms.

Exercise 8.6.4. Show that Prim(R) is a T0 space, that is, for every a , b ∈ Prim(R), there
exists an open subset U such that a ∈ U, b < U.

This topology is called the Jacobson topology or the hull-kernel topology that plays a
prominent role in the study of C∗-algebras. It can be regarded as a noncommutative
analogue of the Zariski topology.

The case of right primitive ideals is similar.

8.7 Finite-dimensional algebras: Burnside’s Theorem
Let k be a commutative ring. Recall that a k-algebra R is a ring homomorphism

ε : k → R
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such that ε(k) lies in the center of R. Thus the multiplication R × R → R is k-bilinear,
inducing a k-linear homomorphism R ⊗k R → R. Note that our algebras are all asso-
ciative and unital by convention. A homomorphism between k-algebras R, R′ is a ring
homomorphism f : R → R′ such that the diagram

R
f // R′

k
ε

^^

ε′

??

commutes. Equivalently, f is a k-linear ring homomorphism.

De�nition 8.7.1. A k-algebra is called a division algebra if it is a division ring.

In what follows, we only consider the case where k is a �eld and regard k as a subset
of R. A k-algebra R is called �nite-dimensional if dimk R is �nite. Finite-dimensional
k-algebras are automatically left (resp. right) artinian and noetherian as rings.

Lemma 8.7.2. Let R be a �nite-dimensional k-algebra and M be a simple left R-module. Let
D :� End(RM) which acts on M on the right, then the natural map R → End(MD) is
surjective.

Proof. Firstly, observe that M must be �nite-dimensional over k. Indeed, M ≃ R/m for
some maximal left ideal m, and m is certainly a k-vector subspace. We may embed k
into D via scalar multiplication. Therefore M is �nitely generated over k ⊂ D. The
required surjectivity then follows from Lemma 8.5.1. �

Thus we recover the following classical result of Burnside. It will be used in the
representation theory of �nite groups.

Theorem 8.7.3. Consider the situation
⋆ k: an algebraically closed �eld,
⋆ V : a �nite-dimensional k-vector space,
⋆ R: a subalgebra of Endk (V) such that the only R-stable subspaces of V are {0} and V .

Then we have R � Endk (V) over k.

Proof. Note that V is a simple left R-module. By Schur’s Lemma, D :� End(RV) is a
division k-algebra that is �nite-dimensional since V is. Every x ∈ D must satisfy some
polynomial equation over k: indeed, the elements

1, x , x2, . . .

in D are linearly dependent over k. Hence D � k since D× � Dr{0} and k is algebraically
closed. We conclude by the previous Lemma that R

∼→ End(VD) � Endk (V). �

The module/representation theory of �nite-dimensional associative algebras is a
highly active area of current research, interweaving ideas from algebra, topology, alge-
braic geometry and combinatorics, etc. One may take a glimpse of [3] to get some taste
of this subject.
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Have a nice vacation!



LECTURE 9

CENTRAL SIMPLE ALGEBRAS

Our main references are [12, §4.6] and [23, Chapter 8]. Substantial use of �eld theory
will be made. Be prepared!

9.1 Basic properties of central simple algebras
Let k be a �eld and A, B be k-algebras. We have de�ned the tensor product k-algebra
A ⊗k B. Recall that

(a ⊗ b)(a′ ⊗ b′) � aa′ ⊗ bb′, a , a′ ∈ A, b , b′ ∈ B

by stipulation. We have inclusions of k-algebras

A � A ⊗ 1 ⊂ A ⊗k B,
B � 1 ⊗ B ⊂ A ⊗k B.

Therefore A and B commute with each other when regarded as subalgebras of A ⊗k B.
Denote the category of k-algebras by k-Alg and that of sets by Sets. The tensor prod-
uct can be characterized by an universal property: there is an isomorphism between
functors from k-Alg to Sets

{
( f , g) ∈ Hom(A,−) ×Hom(B,−) : Im( f ), Im(g) commute

}

↑≃
Hom(A ⊗k B,−)

where the Hom(· · · ) are taken in the category k-Alg: for any k-algebra C and h ∈
Hom(A ⊗k B, C) × Hom(B, C), we associate ( f , g) ∈ Hom(A, C) × Hom(B, C) using
the two inclusions above.

Exercise 9.1.1. Verify the aforementioned universal property for tensor products.

De�nition 9.1.2. Let A be a k-algebra, the center of A is denoted by Z(A). More gen-
erally, for any subset S ⊂ A, we denote by ZA(S) � {z ∈ A : ∀s ∈ S, zs � sz} the
centralizer of S in A. We say that A is central if Z(A) � k.
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Convention 9.1.3. Unless otherwise speci�ed, the k-algebras under consideration are
assumed to be �nite-dimensional over k.

De�nition 9.1.4. Let A be a k-algebra. We say that A is central simple if
⋆ A is a simple ring,
⋆ A is a central k-algebra.

Central simple algebras are left (and also right) noetherian and artinian, hence they
are of the form Mn (D) where D is a central division k-algebra. Recall (Wedderburn-
Artin Theorem) that D and n can be recovered by the decomposition AA ≃ M⊕n where
M is the unique simple left A-module, and D ≃ End(AM).

Our main concern is the tensor products of central simple algebras.

Example 9.1.5. We have Mn (k) ⊗k Mm (k) ≃ Mnm (k) as k-algebras. Indeed, let V and
W be k-vector spaces of dimension n and m, respectively. There is a canonical homo-
morphism

Endk (V) ⊗k Endk (W )
∼−→ Endk (V ⊗k W ),

ϕ ⊗ ψ 7−→ [v ⊗ w 7→ ϕ(v) ⊗ ψ(w)]

which turns out to be an isomorphism by counting dimensions. More generally, we
have Mn (D) ⊗k Mm (k) ≃ Mnm (D) for any division k-algebras D.

The opposite k-algebra (Aop, +, ⋆) of (A, +, ·) is de�ned by x ⋆ y � y · x.

Lemma 9.1.6. Let A be a central k-algebra. The homomorphism of k-algebras

F : A ⊗k Aop −→ Endk (A)
a ⊗ b 7−→ [x 7→ axb]

is an isomorphism if and only if A is central simple.

Proof. Suppose A is not simple. Let I be a proper, nonzero two-sided ideal of A. The
image of F must stabilize I, therefore F cannot be surjective.

Now assume that A is simple. Write E :� A ⊗k Aop and regard A as a left E-module
using F. Then A is a simple E-module since A is a simple ring. We have an identi�cation
End(EA)

∼→ Z(A) � k. Indeed, for ϕ ∈ Endk (A), we have ϕ ∈ End(EA) if and only if
ϕ(xa y) � xϕ(a)y for all a , x , y ∈ A, in which case we have

xϕ(1) � ϕ(x) � ϕ(1)x , x ∈ A

hence ϕ(1) ∈ Z(A); conversely x 7→ zx de�nes an element of End(EA) if z ∈ Z(A).
Apply the Density Theorem to EA. It follows that F is surjective, thus is bijective by

dimension counting. �

Lemma 9.1.7. Let A be a k-algebra and K/k be a �eld extension, then A is central simple over
k if and only if AK :� A ⊗k K is central simple over K.
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Proof. The upshot is that being central simple is a property de�ned in terms of linear
algebra. Indeed, A is central if and only if dimk Z(A) � 1, whilst Z(A) is de�ned by the
k-linear equations xa − ax � 0 in x, where a ranges over a basis of A. The dimension
of Z(A) does not change after base change to K. Thus A is central if and only if AK is
central over K. Similarly, Lemma 9.1.6 asserts that a central k-algebra A is simple if and
only if the k-linear map F is surjective. �

Theorem 9.1.8. Let B be a k-algebra, not necessarily of �nite dimension over k, and A be a
k-subalgebra which is central simple. Set C :� ZB (A), then

1. the natural homomorphism A ⊗k C → B given by a ⊗ c 7→ ac between k-algebras is an
isomorphism;

2. there is a bijection

{two-sided ideals of C} −→ {two-sided ideals of B}
I 7−→ AI � A ⊗k I ,

whose inverse is given by I � AI ∩ C.

3. Z(B) � Z(C).

We need a few easy properties of tensor products in the proof.

(i) For k-module W and any family of k-modules (Xi)i∈I , there is a canonical isomor-
phism

⊕
i∈I (W ⊗k Xi)

∼→W ⊗k
⊕

i∈I Xi .

(ii) Let A be a k-module and E :� Endk (A). For any k-module X, the left E-submodules
Y′ of A⊗k X (with E acting on the �rst slot) are in bijection with the k-submodules
Y of X: set Y′↔ Y if Y′ � A ⊗k Y.

(iii) Let EA be a module and k :� End(EA) so that A becomes an (E, k)-bimodule.
For any EB, the additive group Hom(EA, EB) is a left k-module: for any f ∈
Hom(EA, EB) and κ ∈ k, let κ f be the homomorphism A ∋ a 7→ (aκ) f (recall
that homomorphisms of left E-modules act on the right). The universal property
of ⊗ yields a homomorphism of E-modules

Θ : A ⊗k Hom(EA, EB) −→ EB
a ⊗ f 7−→ a f

where E acts on the �rst slot of the left-hand side.

Exercise 9.1.9. Justify these properties.

Proof. As before, we regard B as a left E-module, where E :� A ⊗k Aop acting on B by
left and right multiplication. By the previous Lemma, E

∼→ Endk (A) is semisimple and
simple as a ring, thus every E-module is a direct sum of copies of EA. Since End(EA) �
Z(A) � k, the property (iii) gives a homomorphism of left E-modules

Θ : A ⊗k Hom(EA, EB) −→ B.



94

We contend that Θ is an isomorphism. For injectivity, note that ker(Θ) � A ⊗k Y
for some k-subspace Y ⊂ Hom(EA, EB), by the property (ii) above. If ι ∈ Y is nonzero,
there would exist a ∈ A with Θ(a ⊗ ι) � ι(a) , 0; hence ker(Θ) � 0. Now assume
EB � (EA)⊕I for some set I; every b ∈ B has the form b �

∑
i∈I0 ιi (ai) where I0 ⊂ I is

�nite and ιi : A → B is the inclusion into the i-th component. The surjectivity follows
as b �

∑
i∈I0 Θ(ai ⊗ ιi).

Let us derive (1). Pick a k-basis B of A. By the foregoing discussions, every b ∈ B
admits a unique expression

b �

∑

ι∈B
ι(aι) � Θ *,

∑

ι∈B
aι ⊗ ι+- , aι ∈ A.

In view of the E-module structure on B, we have b ∈ ZB (A) if and only if (a ⊗ 1)b �

(1 ⊗ a)b holds true for all a ∈ A; as Θ is E-linear, this amounts to

(a ⊗ 1)aι � (1 ⊗ a)aι , a ∈ A, ι ∈ B.
But this is equivalent to aaι � aιa, i.e. aι ∈ Z(A) � k. All in all, we have identi�ed
C � ZB (A) with the image of 1⊗Hom(EA, EB) underΘ. The homomorphismΘ is then
identi�ed with the canonical homomorphism A ⊗k C → B given by a ⊗ c 7→ ac.

To derive (2), we use the isomorphismΘ and the property (ii) above to show that the
E-submodules of B are in bijection with k-subspaces of C: to I ⊂ C we attach AI ⊂ B.
It remains to show that AI is a two-sided ideal of B if and only if I is a two-sided ideal
of C: this follows from (1).

The assertion (3) is now clear. �

Let A be a central simple k-algebra and C be any k-algebra. Set B :� A⊗k C. One may
check that C � ZB (A) by choosing a k-basis of C, as in the proof of (1) above. Hence
the earlier Theorem is applicable to A, B and C.

Corollary 9.1.10. Let A be a central simple algebra. For every k-algebra B, the k-algebra A⊗k B
is simple (resp. central) if and only if B is.

Theorem 9.1.11. Let B be a central simple k-algebra and A be a simple subalgebra of B. Every
homomorphism ϕ : A ֒→ B of k-algebras can be extended to an automorphism of B which is
inner, that is, of the form x 7→ y−1x y for some y ∈ B×.

Proof. Set C :� A⊗k Bop. It is a �nite-dimensional simple k-algebra by the previous The-
orem. The Wedderburn-Artin Theorem implies that the left C-modules are classi�ed
by their dimensions over k.

There are two left C-modules structures on B. One is de�ned using the usual left
and right multiplications by A and B, respectively. To de�ne the other one, let a ∈ A
acts by left multiplication by ϕ(a) and leave the B-action intact. These two C-module
structures must be intertwined by some ℓ ∈ Autk (B), namely

ℓ(x)b � ℓ(xb), x , b ∈ B,
aℓ(x) � ℓ(ϕ(a)x), a ∈ A, x ∈ B.

The �rst formula implies that ℓ(x) � yx for all x, where y :� ℓ(1) ∈ B×. The second
one implies a y � yϕ(a), or equivalently: ϕ(a) � y−1a y. �
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Corollary 9.1.12 (Skolem-Noether). Automorphisms of central simple k-algebras are inner.

Proof. Take A � B in the previous Theorem. �

Theorem 9.1.13. Let B be a central simple k-algebra.

1. For every semisimple k-subalgebra A of B, we have ZB (ZB (A)) � A.

2. If A is simple, then ZB (A) is simple. Furthermore, dimk B � dimk A · dimk ZB (A).

Proof. The idea is to realize ZB (A) as an endomorphism algebra and apply the existing
results on double centralizers, such as the Density Theorem. Set

E0 :� A ⊗k Bop.

This is a semisimple k-algebra. To see this, it su�ces to decompose A into simple factors
(Wedderburn-Artin theory) and apply Corollary 9.1.10. As before, B can be regarded
as a E0-module using bilateral multiplication; it is semisimple since E0 is. Set

E′ :� End(E0 B).

We may identify E′ with ZB (A) which acts on B by left multiplication. Indeed, let
f ∈ E′:
⋆ commutation with the action of 1 ⊗ Bop forces f to be x 7→ bx for some b ∈ B,

whilst
⋆ commutation with A ⊗ 1 forces b ∈ ZB (A).

The density theorem implies that the natural homomorphism E0 → End(BE′) is surjec-
tive; it is injective as well by Lemma 9.1.6 applied to B.

Given x ∈ ZB (ZB (A)), the endomorphism b 7→ xb of B commutes with the action
of E′, hence comes from E0. The injectivity of B ⊗k Bop → Endk (B) implies that

x ⊗ 1 ∈ (B ⊗ 1) ∩ (A ⊗ Bop) � A ⊗ 1,

proving the inclusion ZB (ZB (A)) ⊂ A. The other direction is trivial. This proves (1).
To prove (2), assume the simplicity of A. Then E0 is simple by Corollary 9.1.10. Let

M be the unique simple E0-module, D :� End(E0 M), and write E0 B � M⊕r , M � D⊕s .
It follows that

ZB (A) ≃ E′ � End(E0 B) ≃ Mr (D)

is simple, thereby proving the �rst assertion of (2). The dimension equality follows by
sorting out the following equations (abbreviation: dim � dimk)

dim B � r · dim M,

dim E0 � dim A · dim B,
dim M � s · dim D ,

dim E0 � s2 dim D , (recall : E0 ≃ Ms (D)),

dim ZB (A) � r2 · dim D.

Thus (2) is proved. �

Exercise 9.1.14. Fill out the details of the last step.
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9.2 Splitting �elds

Lemma 9.2.1. For any k-algebra A, there is an isomorphism A ⊗k Mn (k)
∼→ Mn (A) between

k-algebras.

Proof. To a ∈ A and (αi j)1≤i , j≤n ∈ Mn (k) we associate (aαi j)1≤i , j≤n ∈ Mn (A). �

De�nition 9.2.2. Let A be a central simple k-algebra and K be a �eld extension of k.
We call K a splitting �eld of A if AK :� A ⊗k K ≃ Mn (K) as K-algebras. We call A split if
A ≃ Mn (k) for some n.

By writing A ≃ Mn (D), one sees that splitting �elds exist; for example, we may take
K to be an algebraic closure of k in order to split D. We will prove much stronger results
on splitting �elds.

In what follows, a “sub�eld” in a k-algebra A will always mean a k-subalgebra of A
which is a �eld.

Lemma 9.2.3. Let A be a central simple k-algebra and L be a sub�eld of A. Set AL :� A ⊗k L
and C :� ZA(L), there exist m , n such that Mm (AL) ≃ Mn (C) as L-algebras.

Note that C is a central simple L-algebra. Indeed, the simplicity of C follows from
Theorem 9.1.13; furthermore, it implies that

L ⊂ Z(C) ⊂ ZA(C) � ZA(ZA(L)) � L.

It is probably better to write AL ∼ C using the notion of similarity between central
simple L-algebras; cf. De�nition 9.3.1.

Proof. Make A into a left AL � A ⊗k L-module by bilateral multiplication as usual (note
that L � Lop). As observed in the proof of Theorem 9.1.13, End(AL A) ≃ C (acting by
right multiplication).

Lemma 9.1.7 asserts that AL is a central simple L-algebra. The unique simple AL-
module is �nite-dimensional over L (it is a quotient of AL — choose a generator!); let D
be its endomorphism algebra, which is also �nite-dimensional. For every AL-module
M of �nite dimension over L, there exists d such that End(AL M) ≃ Md (D). Applying
this to the left AL-modules A and AL yields the required result. �

Proposition 9.2.4. Let D be a central division k-algebra, then every maximal sub�eld L of D
is a splitting �eld of D. Furthermore, [L : k]2 � dimk D.

Proof. Note that ZD (L) � L by the maximality of L. The previous Lemma implies that
Mm (DL) ≃ Mn (L) for some m , n. By the uniqueness part in the Wedderburn-Artin
theory for semisimple simple L-algebras, we see that DL ≃ Md (L) for some d. The
second assertion follows from the dimension equality in Theorem 9.1.13. �

Remark 9.2.5. Maximal sub�elds of D are not unique in general. Counterexamples ap-
pear naturally in the case of quaternion algebras, cf. De�nition 9.6.1.

The next result is crucial. It will allow us to apply the technique of Galois descent
to study central simple algebras.
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Figure 9.1: Richard D. Brauer (1901-1977) together with Barthel L. van der Waerden
(left). Source: Oberwolfach Photo Collection.

Theorem 9.2.6. Let A be a central simple k-algebra, then A splits over a separable �nite exten-
sion of k. More precisely, every central division k-algebra D contains a maximal sub�eld which
is separable.

Proof. The second assertion implies the �rst one by Proposition 9.2.4. Let D be a central
division k-algebra and L be a maximal separable sub�eld of D. We have to show that
L is actually a maximal �eld.

Let C :� ZD (L) so that C is a division L-algebra; it is central by Theorem 9.1.13. If L
is not a maximal sub�eld, then C ) L and the following Lemma 9.2.7 would exhibit a
separable extension L′ ) L in C, contradicting the maximality of L. �

Lemma 9.2.7. Let k be a �eld and let D be a central division k-algebra. If D , k, then D
contains a separable extension L ) k.

Proof. The following proof is due to Artin. Let N :� dimk D, N > 1. Every ξ ∈ D gen-
erates a �eld extension k(ξ) of k with [k(ξ) : k]|N . The extension can be decomposed
into k(ξ) ⊃ k(ξ)s ⊃ k with k(ξ)/k(ξ)s purely inseparable and k(ξ)s/k separable. If D
contains no separable extension other than k itself, then
⋆ k has characteristic p > 0;
⋆ for every ξ ∈ D, we would have k(ξ)s � k, thus ξpd ∈ k for some d ∈ �≥1;
⋆ k is in�nite (otherwise kp � k, forcing D � k by the previous condition).

Let q be the highest power of p divides N . As the inseparable degree [k(ξ) : k]i divided
N , we have ξq ∈ k for every ξ ∈ D. The next step is to write

D � E ⊕ k · 1, for some E ⊂ D

as k-vector spaces. Let pr : D ։ E be the corresponding k-linear projection. Note that
we may identify D ≃ kN , E ≃ kN−1 upon choosing bases, and regard them as a�ne k-
spaces. Then pr : D → E is a polynomial map. On the other hand, the q-th power map
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ξ 7→ ξq from D to itself is also a polynomial map. All in all, ξ 7→ pr(ξq) is polynomial
map, denoted as Q : D → E. We have ξq ∈ L ⇐⇒ Q(ξ) � 0, thus

Q(ξ) � 0, ∀ξ ∈ D.(9.1)

Write Q � ( f1, . . . , fN−1) in coordinates, where fi ∈ k[X1, · · · ,Xn]. The upshot is that
(9.1) implies that the polynomials f1, . . . , fN−1 are identically zero, since k is an in�-
nite �eld 1. But now we can change the base �eld k to a splitting �eld L of D, ob-
taining the polynomial map QL : DL → EL in the same manner. More precisely, we
have QL � ( f1, . . . , fN−1) in coordinates where those fi are now viewed as elements of
L[X1, . . . ,XN]. Hence we still have

QL (ξ) � pr(ξq) � 0, ∀ξ ∈ DL � Mn (L).

Therefore ξq ∈ L · 1 for all ξ ∈ Mn (L). This is impossible when n �
√

N > 1: take ξ
to be the diagonal matrix with entries (1, 0, . . . , 0), for instance. �

Another proof using derivations, due to I. N. Herstein, can be found in [12, §8.8].

9.3 Brauer groups
De�nition 9.3.1. Let A and B be central simple k-algebras. We say that A is similar to
B, written as A ∼ B, if there exist n ,m ∈ �≥1 such that Mn (A) ≃ Mm (A).

This de�nes an equivalence relation. If A and B are central division k-algebras, then
A ∼ B if and only if A ≃ B by our earlier discussion on the Wedderburn-Artin theory.
Also note that Lemma 9.2.1 implies

A ∼ A′ ⇒ A ⊗k B ∼ A′ ⊗k B.

De�nition-Proposition 9.3.2. Let Br(k) be the monoid formed by the similarity classes
central simple k-algebras, the multiplication being given by ⊗-products and the units
being the class of k. Then Br(k) is a commutative group, called the Brauer group of k.

In view of Lemma 9.2.1, this amounts to inverting the Mn (k)’s in the monoid (under
⊗) of isomorphism classes of central simple k-algebras.

Proof. The commutativity follows from the isomorphism between k-algebras

A ⊗k B −→ B ⊗k A
a ⊗ b 7−→ b ⊗ a.

To show that Br(k) is a group, it remains to exhibit the inverses. Indeed we may de�ne
the inverse [A]−1 of the class [A] as Aop; we have A ⊗k Aop ∼ k by Lemma 9.1.6. �

Exercise 9.3.3. Justify the following statements.

1In the parlance of algebraic geometry, we used the fact that the k-points in a�ne k-spaces are Zariski
dense.
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1. Br(�) � �/2�, the nontrivial element being represented by Hamilton’s quater-
nion algebra. Hint: use Frobenius’ theorem for real division algebras.

2. If k is a �nite �eld, then Br(k) is trivial. Hint: by a celebrated theorem of Wed-
derburn, �nite division rings are just �elds.

3. If k is separably closed, then Br(k) is trivial.

Remark 9.3.4. The vanishing of Br(k) holds for an important class of �elds called C1
�elds, such as the function �elds of algebraic curves over an algebraically closed �eld
(Tsen-Lang theorem). We recommend [7] for a very readable account on central simple
algebras, C1 �elds and the life of its creator Zeng Jiongzhi (1898-1940).

For any �eld extension K of k, the map A 7→ AK :� A ⊗k K induces a group homo-
morphism

Br(k) → Br(K).

Denote its kernel by Br(K/k). It is the subgroup of Br(k) of elements which split over
K. By Theorem 9.2.6 we deduce

Br(k) �
⋃

K/k:�nite Galois
Br(K/k).

Exercise 9.3.5. Show that (A ⊗k B)K ≃ AK ⊗K BK for all central simple k-algebras A, B.
Thus [A] 7→ [AK] is indeed a well-de�ned group homomorphism.

Let K be a �nite Galois extension of k. Let n ∈ �≥1 and denote by CSAn (K/k) the
isomorphism classes of central simple k-algebras of dimension n2 that split over K. We
shall describe CSAn (K/k) using the technique of Galois descent. Let A ∈ CSAn (K/k),
the idea is to compare A with its split avatar Mn (k) ∈ CSAn (K/k).

Choose an isomorphism f : AK
∼→ Mn (K) over K and recall that Gal(K/k) acts on

AK and Mn (K) through its action on K. For every σ ∈ Gal(K/k), set

σ f :� σ ◦ f ◦ σ−1.

De�ne GLn (K) as the group of invertible elements in Mn (K) and de�ne PGLn (K) :�
GLn (K)/K×. The group PGLn (K) acts faithfully on Mn (K) by the adjoint action Ad(g) :
X 7→ gX g−1.

Exercise 9.3.6. Use Skolem-Noether Theorem (Corollary 9.1.12) to show that there ex-
ists a unique map σ 7→ cσ ∈ PGLn (K), for σ ∈ Gal(K/k), such that

σ f � Ad(cσ) ◦ f .

Show that

cστ � σ(cτ)cσ , σ, τ ∈ Gal(K/k).(9.2)

The functions c : Gal(K/k) → PGLn (K) satisfying (9.2) are called 1-cocylces with
values in PGLn (K).
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Exercise 9.3.7. Call two 1-cocycles c , c′with values in PGLn (K) equivalent if there exists
b ∈ PGLn (K) such that

c′σ � σ(b)cσb−1, σ ∈ Gal(K/k).

Denote by H1(K/k , PGLn) the set of equivalence classes of 1-cocycles with values in
PGLn (K). Show that the class [c] of the 1-cocycle constructed above is independent of
the choice of f .
Exercise 9.3.8. Deduce a canonical bijection from CSAn (K/k) onto H1(K/k , PGLn), un-
der which Mn (k) is mapped to the distinguished element represented by the constant
function . Use Theorem 9.4.1 if need be.
Remark 9.3.9. To obtain a cohomological description of the group Br(K/k), we have to
pass to another object H2(K/k ,�m) and play with 2-cocycles. Moreover, the Brauer
group Br(k) can be shown to be isomorphic to H2(k ,�m) � lim−−→K/k

H2(K/k ,�m). This
approach requires either more involved cohomological machineries, or a complicated
construction of cross-products. We will not go into the details.
Remark 9.3.10. There is an important generalization of central simple algebras called
Azumaya algebras, by allowing k to be a commutative local ring. Likewise the Brauer
group can be de�ned in this context. This makes it possible to de�ne the Brauer group
in algebraic geometry, namely a group Br(X) of a scheme X in terms of Azumaya OX-
algebras. It has an interpretation via étale cohomology, and becomes a useful vehicle
for studying the rational points on algebraic varieties in the hands of Yu I. Manin.

9.4 Rational structure on vector spaces
This section serves as a preparation for the study of reduced norms and traces of central
simple algebras.

Let k be a �eld and K be a Galois extension of k, possibly of in�nite degree. Write
Γ :� Gal(K/k). The category of K-vector spaces is denoted by VectK .

Given a K-vector space W , a Galois action on W is an action of Γ on W such that
⋆ for every σ ∈ Γ and t ∈ K, w ∈ W , we have σ(tw) � σ(t)σ(w);
⋆ W �

⋃
Γ′ WΓ′ where Γ′ ranges over the subgroups of Γ of �nite index, and WΓ′ is

the k-subspace of Γ′-�xed elements.
For a K-linear homomorphism f : W →W′ between K-vector spaces endowed with

Galois actions, we set
σ f :� σ ◦ f ◦ σ−1

which is still K-linear. We say f is Γ-equivariant if σ f � f for every σ ∈ Γ. The K-vector
spaces together with the Γ-equivariant homomorphisms form a category VectK,Γ.

If V is a k-vector space, then VK :� V ⊗k K is equipped with the obvious Galois
action, say by letting Γ act on K. We can recover V since (VK)Γ � V ⊗k 1 � V .
Theorem 9.4.1. The functor

Vectk −→ VectK,Γ

V 7−→ V ⊗k K

is an equivalence; a quasi-inverse is given by W 7→WΓ.
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Proof. Given an object W of VectK,Γ, we set V :� WΓ. There is a natural homomorphism
V ⊗k K →W in VectK,Γ. We shall prove its injectivity �rst.

The kernel W′ of V ⊗k K → W is a Γ-stable subspace of V ⊗k K whose intersection
with V ⊗ 1 is zero. Claim: such a subspace W′ must be zero. Indeed, choose a k-basis
{ei }i∈I for V . Choose a nonzero element w ∈ W′ whose expression w �

∑
i ai ei is as

short as possible. To simplify the notations, let us assume I � �≥1. We may arrange
that w � e1 + a2e2 + · · · and a2 < k. By choosing σ ∈ Γ such that σ(a2) , a2, we get
w − σ(w) ∈ W′ r {0} with a shorter expression in e1, e2, . . .. Contradiction.

As for the surjectivity, let w ∈ WΓ′ for Γ′ � Gal(K/k′) where k′/k is a �nite extension.
Upon enlarging k′ we may assume k′/k Galois of degree n. Let a1, . . . , an be a k-basis
of k′ and enumerate the elements of Gal(k′/k) as 1 � σ1, σ2, . . . , σn . From the linear
independence of characters [16, p.284], (σ j (ai))i , j is an invertible n × n-matrix over k′
whose inverse we denote by (bi j)i , j . Now:

w � 1 · w �

n∑

j�1
δ j,1σ j (w) �

n∑

i , j�1
σ j (ai)bi ,1σ j (w) �

n∑

i�1
bi ,1

*.,
n∑

j�1
σ j (ai)σ j (w)+/-︸                ︷︷                ︸

∈(WΓ′ )Gal(k′/k)�WΓ�V

where δ j,1 is Kronecker’s δ. Thus W � V ⊗k K. To establish the equivalence between
categories, it remains to show the bijectivity of

Homk (V1,V2) → HomK (V1 ⊗k K,V2 ⊗k K)Γ−equivariant

for V1,V2 ∈ Vectk , by categorical nonsense. This can be readily checked, for example
by expressing the linear maps in terms of k-bases. �

9.5 Reduced norms and reduced traces
Proposition 9.5.1. Let A be a central simple k-algebra of dimension n2. There are canonical
polynomial maps over k

Trd : A→ k ,
Nrd : A→ k

such that

1. Trd is k-linear and Trd(x y − yx) � 0 for every x , y ∈ A;

2. Nrd is multiplicative, homogeneous of degree n, sending 1 to 1;

3. for every splitting �eld K of A and FK : AK
∼→ Mn (K), we have Trd � Tr ◦ FL |A and

Nrd � det ◦FL |A, where Tr and det are the usual trace and determinant maps of Mn (K).

These maps are certainly uniquely determined, called the reduced trace and the re-
duced norm of A, respectively.
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Proof. In view of Theorem 9.2.6, we may start from the case in which K is a separable
closure of k. De�ne T :� Tr ◦ FK and N :� det ◦FK as in the statement 3. They are
polynomial maps over K from AK to K; we want to show that T and N descend to k,
that is, there exist polynomial maps over k from A to k, which give rise to T and N after
a change of base �eld K/k. The idea is to apply Theorem 9.4.1 to the vector spaces of
such polynomial functions.

By Corollary 9.1.12, for every σ ∈ Gal(K/k) we have

σFK :� σ ◦ FK ◦ σ−1
� Ad(cσ) ◦ FK

for some cσ ∈ PGLn (K), where
⋆ σ is taken relative to the k-structure Mn (k) for Mn (K),
⋆ σ−1 is taken relative to the k-structure A for AK , and
⋆ Ad(cσ) : X 7→ cσXc−1

σ is the adjoint action.
Since Tr and det are de�ned over k and invariant under conjugation, we see σT � T and
σN � N . Hence T and N are de�ned over k. The required properties in statements 1
and 2 follow immediately.

The same holds when K contains a separable closure of k. Now let K be any splitting
�eld of A. By adjoining the roots of separable polynomials into K, we may pass to a �eld
K′ ⊃ K that contains a separable closure of k. We have

AK′
FK′ // Mn (K′)

AK
?�

OO

FK

// Mn (K)
?�

extension of scalars
OO

and the required properties follow from the previous case. �

The adjective “reduced” is explained by the following.

Corollary 9.5.2. Keep the notations above. Let a ∈ A and de�ne endomorphisms of the k-vector
space A as follows

La : x 7→ ax ,
Ra : x 7→ xa.

Then we have

Tr(Ra) � Tr(La) � nTrd(a)
det(Ra) � det(La) � Nrd(a)n .

Proof. It su�ces to check this on a splitting �eld, thus we may assume A � Mn (k). The
remaining arguments are straightforward. �

We also write TrdA, NrdA to emphasize the reference to A, if need be.

Exercise 9.5.3. Show that a ∈ A× if and only if NrdA(a) , 0.

Exercise 9.5.4. Let D be a central division k-algebra and A � Mn (D).
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1. For an upper-triangular matrix X � (xi j) ∈ A, show that TrdA(X) �
∑n

i�1 TrdD (xii)
and NrdA(X) �

∏n
i�1 NrdD (xii).

2. For a permutation matrix X, show that Nrd(X) � ±1.

3. Show that NrdA(A×) � NrdD (D×).

9.6 Example: quaternion algebras
You are probably familiar with Hamilton’s quaternion algebra. It is the central division
�-algebra� � � ⊕ �i ⊕ �j ⊕ �k, subject to the multiplication law

i2
� j2

� k2
� −1,

i j � − ji � k ,
jk � −k j � i ,
ki � −ik � j.

Up to isomorphism, this is the only �nite-dimensional division �-algebra besides �
and � (Frobenius’ theorem). Let us generalize this construction over any �eld F of
characteristic , 2.

De�nition 9.6.1. Let F be a �eld of characteristic , 2. Let a , b ∈ F×, the corresponding
quaternion algebra, denoted by

(a b
F
)
, is the F-algebra F⊕Fi⊕F j⊕Fk whose multiplication

table is determined by

i2
� a , j2

� b ,
i j � − ji � k.

Proposition 9.6.2. Let a , b ∈ F×. Then
(a b

F
)

is a central simple F-algebra, and the following
statements are equivalent.

1. The equation x2 − a y2 − bz2 + abw2 � 0 has a solution in F4 r {(0, 0, 0, 0)}.
2. The F-algebra

(a b
F
)

is not a division algebra.

3.
(a b

F
) ≃ M2(F).

Proof. Observe that for every r, s ∈ F× we have
(a b

F
) ∼→ (ar2 bs2

F
)
: simply use the ho-

momorphism 1 7→ 1, i 7→ ri, j 7→ s j and k 7→ rsk. Next, we have
(1 −1

F
) ≃ M2(F) by

sending

i 7→ E01 + E10,

j 7→ E01 − E10,

k 7→ E11 − E00,

in our notation for matrices in Lecture 7. Recall that an F-algebra A is central simple
if and only if AE :� A ⊗F E is central simple over E, for any �eld extension E (Lemma
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9.1.7). We may pass to a �nite extension E/F in which a ,−b ∈ E×2, so that
(a b

F
) ⊗F E �(a b

E
) ≃ M2(E), hence

(a b
F
)

is central simple over F.
(1)⇒ (2). Set τ(x + yi + z j + wk) :� x − yi − z j − wk. We leave it to the reader to

check that τ is an F-linear anti-automorphism of
(a b

F
)
, i.e. τ :

(a b
F
) ∼→ (a b

F
)op

. Now put

N (α) :� ατ(α), x + yi + z j + wk 7→ x2 − a y2 − bz2 + abw2 ∈ F.

One readily checks that N de�nes a multiplicative map
(a b

F
) → F such that N (1) �

1, N (0) � 0. If x2 − a y2 − bz2 + abw2 � 0 with (x , y , z , w) , (0, 0, 0, 0), then α :�
x + yi + z j + wk is nonzero and satis�es N (α) � 0, hence is not invertible in

(a b
F
)
.

(2) ⇒ (3). Since
(a b

F
)

is 4-dimensional, this is an immediate consequence of the
structure theory of central simple algebras.

(3) ⇒ (1). Suppose that the only solution of x2 − a y2 − bz2 + abw2 � 0 in F4 is
(0, 0, 0, 0). Every α � x + yi + z j + wk , 0 is then invertible with α−1 � N (α)−1τ(α)
since N (α) , 0. �

Remark 9.6.3. One may check that the map N is exactly the reduced norm of
(a b

F
)
.

Conversely, the quaternion algebras exhaust all 4-dimensional central simple F-
algebras.
Theorem 9.6.4 (Wedderburn). Every 4-dimensional central simple F-algebra A is isomorphic
to

(a b
F
)

for some a , b ∈ F×.

Proof. We may assume that A is a central division algebra since M2(F) ≃ (1 −1
F

)
. Let

E be a maximal sub�eld of A; we have E � F[i] ⊂ A for some element i satisfying
i2 � a ∈ F×. Therefore the inner automorphism σ : x 7→ ixi−1 of A is an involution
(i.e. σ2 � id). Furthermore σ , id, otherwise we would have i ∈ Z(A) � F. Thus the
(−1)-eigenspace of σ is nontrivial, say σ( j) � − j for some j ∈ A r F. Let K � F[ j] ⊂ A.
Note that E and K are quadratic extensions of F.

Consequently, σ(K) � K but σ |K , id. It follows that j2 � b for some b ∈ F×.
Finally put k :� i j ∈ A. All the relations de�ning

(a b
F
)

are veri�ed and it remains to
show that 1, i , j, k are linearly independent over F. It is left to the reader to show that,
if x + yi + z j + wk � 0, conjugation by i, j and k yields the extra relations

x + yi − z j − wk � 0
x − yi + z j − wk � 0
x − yi − z j + wk � 0.

The required linear independence follows at once. �

Remark 9.6.5. For a , b ∈ F×, let (a , b)F ∈ Br(F) be the class of
(a b

F
)
. In view of the

preceding results, the classi�cation of 4-dimensional central simple F-algebras boils
down to describe all the relations among the classes (a , b)F in Br(F). For general F, the
map (a , b) 7→ (a , b)F factors through a bi-additive map

(F×/F×2) × (F×/F×2) → Br(F)

and satis�es (x , y)F � 1 if x + y � 1 – this immediately suggests some relationship to
algebraic K-theory. When F is a local �eld, (a , b)F can be identi�ed with the quadratic
Hilbert symbol of F.
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The theory of central simple algebras have intimate connections with quadratic and
hermitian forms. For example, the double centralizer theorems re�ect analogous clas-
sical construction for quadratic forms. Due to time constraints, we will not dive into
the details. The interested reader may consult [23] for details.
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LECTURE 10

MORITA THEORY

10.1 Review of categorical nonsense
The category of abelian groups is denoted by Ab.

Let R be a ring, the category of left (resp. right) R-modules is denoted by R-Mod
(resp. Mod-R). Similarly, given a pair of rings (R, S), we may de�ne the category of
(R, S)-bimodules (R, S)-Mod: it is equivalent to the category R ⊗

�
Sop-Mod.

We shall work exclusively with the category R-Mod; the other cases can be deduced
by considering the opposite rings. Unless otherwise speci�ed, R-modules will always
mean left R-modules.

The category R-Mod is an abelian category, meaning that it is an additive category
in which every morphism is strict and admits kernels and cokernels. These wordings
should not bother us here: it su�ces to notice that it makes sense to talk about short
exact sequences

0→ M′→ M
f−→ M′′→ 0

in an abelian category; here M′ � ker( f ) and M′′ � im( f ). All these are already familiar
in the case of R-Mod.

De�nition 10.1.1. In an abelian category C, an object P is called projective if the functor
Hom(P,−) : C → Ab is exact. That is, for every short exact sequence

0→ M′→ M → M′′→ 0

in C, the sequence

0→ Hom(P,M′) → Hom(P,M) → Hom(P,M′′) → 0

is exact in Ab. Note that Hom(P,−) is only left exact for general P: we only have the
exactness of 0→ Hom(P,M′) → Hom(P,M) → Hom(P,M′′) in Ab.

An R-module M is called free if M ≃ RR⊕I for some indexing set I. Free modules
are projective.

107
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Proposition 10.1.2. For an object P of R-Mod, the following statements are equivalent.
1. P is projective;

2. Every short exact sequence 0 → M′ → M
f−→ P → 0 in R-Mod splits, that is, there

exists s : P → M such that f ◦ s � id;

3. P is a direct summand of some free R-module.
Proof. (1)⇒ (2). Take s to be an inverse image of id under the surjection Hom(P,M) →
Hom(P, P).

(2)⇒ (3). There exists a surjection f : R⊕I ։ P for some indexing set I. Now apply
(1) to get ( f , 1 − s ◦ f ) : R⊕I ∼→ P ⊕ ker( f ).

(3)⇒ (1). We may assume that R⊕I � P ⊕M, then

Hom(R⊕I ,−) � Hom(P,−) ⊕ Hom(M,−).

The functor on the left-hand side is known to be exact, hence Hom(P,−) and Hom(M,−)
are both exact. �

We remark that when P is a projective and �nitely generated left R-module, P can
actually be realized as a direct summand of RR⊕n for some n ∈ �≥1; this is clear from
the proof above.
Exercise 10.1.3 (Eilenberg’s trick). Show that, in the statement 3 above, we may actually
take a free R-module F such that F ≃ P ⊕ F. Hint: suppose that P ⊕M is free for some
M; take the countable direct sum F :� (M ⊕ P) ⊕ (M ⊕ P) ⊕ · · · .
De�nition 10.1.4. In an abelian category C admitting inductive limits1 (eg. R-Mod, the
uninterested reader may skip the extra generality here), there are two generalizations
of �nite generation of an object M:

(i) For any family of subobjects {Mi : i ∈ I} of M such that
∑

i∈I Mi � M, we have∑
i∈I0 Mi � M for some �nite subset I0 of I.

(ii) For any chain of subobjects {Mi : i ∈ I} of M (i.e. totally ordered by inclusion), we
have

∑
i∈I Mi , M if Mi , M for any i ∈ I.

Here I denotes an indexing set. We may call (i) as “compactness” (topological notion)
whereas (ii) as “�nite type” (algebraic notion).
Theorem 10.1.5. The conditions (i) and (ii) are equivalent. In the category R-Mod they are
both equivalent to the �nite generation of an R-module.
Proof. The equivalence of (i) and �nite generation in R-Mod is easy. (i) �⇒ (ii):
Assume

∑
i∈I Mi � M holds for the chain (Mi)i∈I . Let I0 be given by (i), we have

Mmax(I0) � M.
(ii) �⇒ (i): Consider a set J of subobjects of M such that J is closed under

∑
and

M ∈ J. Let J′ :� J r {M}. These sets are partially ordered by inclusion. Condition (ii)
entails that every chain in ( J′, ≤) has its sum in J′. It su�ces to show that for every
subset ∅ , I ⊂ J′ we have

∑
i∈I Mi < J �⇒ ∑

i∈I0 Mi < J for some �nite subset I0 ⊂ I.
This is a set-theoretic property: see [21, §4.7, Lemma 1] for a proof. �

1The standard practice seems to be working with Grothendieck categories, and we have to choose an
“universe” as well. The inductive limits are then assumed to be small. Let us forget about these technical
details
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De�nition 10.1.6. Let P be an object in an abelian category C.
⋆ P is called a generator if Hom(P,−) is a faithful functor from C to Ab, i.e. it is

injective on the Hom-sets. Explicitly, we require that for given objects M,M′
and every nonzero f ∈ Hom(M,M′), there exists g ∈ Hom(P,M) such that
Hom(P, f )(g) � f ◦ g ∈ Hom(P,N) is nonzero.

⋆ P is called a progenerator if P is projective, �nitely generated (in the sense of De�-
nition 10.1.4) and is a generator.

Example 10.1.7. The free R-modules are progenerators in R-Mod. It su�ces to check
this for the free R-module RR. Note that Hom(RR,M) � M for every M.

Remark 10.1.8. By the Freyd-Mitchell Theorem, any small abelian category C is equiv-
alent to a full abelian subcategory of R-Mod, for some ring R. It is perhaps worth
mentioning that the proof of the Freyd-Mitchell theorem relies on taking appropriate
generators.

Let us take a closer look at the case the category of R-modules.

De�nition 10.1.9. Let M be an R-module. The trace ideal of M is de�ned as

Tr(M) :�
∑

f ∈Hom(M,RR)

im( f ) ⊂ R.

This is a two-sided ideal of R. Indeed, suppose that r �
∑n

i�1 fi (mi) for some fi :
M → RR and mi ∈ M, i � 1, . . . , n. For any s ∈ R, we have

sr �

n∑

i�1
fi (smi) ∈ Tr(M),

rs �

n∑

i�1
( fis)(mi) ∈ Tr(M),

where fi s ∈ Hom(M, RR) means fi followed by the right multiplication by s.

Proposition 10.1.10. Let P be an R-module. The following statements are equivalent.
1. P is a generator in R-Mod.
2. Tr(P) � R.
3. RR is a quotient of P⊕I for some �nite indexing set I.
4. RR is a quotient of P⊕I for some indexing set I.
5. Every R-module M is a quotient of P⊕I , for some indexing set I depending on M.

Proof. (1) ⇒ (2). Let a :� Tr(P). If a , R, then R → R/a is a nonzero morphism in
R-Mod. By the de�nition of generators, there must exist g ∈ Hom(P, RR) such that the
composition P

g−→ R → R/a is nonzero. This would imply that im(g) 1 a, which is
absurd.

(2)⇒ (3). By assumption, there exists g1, . . . , gn ∈ Hom(P, RR) such that

n∑

i�1
im(gi) � R;
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indeed it su�ces that the sum of images contains 1 ∈ R. Hence we obtain an epimor-
phism P⊕n ։ RR.

(3)⇒ (4). Trivial.
(4)⇒ (5). Every M is a quotient of some free R-module.
(5) ⇒ (1). Let f : M → N be some nonzero morphism in R-Mod. There exists

an epimorphism ψ � (ψi)i∈I : P⊕I ։ M for some I, where ψi ∈ Hom(P,M). The
composition ( f ◦ ψi)i∈I : P⊕I → M → N is nonzero, hence f ◦ ψi , 0 for some i ∈ I, as
required. �

10.2 Morita contexts
The main results are due to Kiiti Morita (1915-1995) [18]; see [1] for a description of
his works in algebra and topology. We will follow the standard treatment of Morita
theory, eg. that of [14, §18]. Nonetheless, we will work with left R-modules rather than
the right ones.

De�nition 10.2.1. Two rings R and S are called Morita equivalent if the categories R-
Mod and S-Mod are equivalent.

Likewise one can de�ne Morita equivalences using right modules. However, it turns
out that the notion of Morita equivalence is left-right symmetric (Proposition 10.5.1).
This is somehow surprising since R-Mod and Mod-R are not equivalent in general. For
example, a ring R being left primitive is a property of the category R-Mod [14, p.482],
whereas we have remarked that the notion of primitivity is not left-right symmetric.

Two rings R and S are Morita equivalent if and only if there exists a pair of functors

R −Mod
F // S −Mod
G
oo

which are mutually inverse equivalences of categories (see Convention 10.4.1). Set Q :�
F(RR) and P :� G(SS). We will de�ne the Morita contexts by extracting the properties
of such pairs (P,Q) using the notion of progenerators introduced before. Then we will
prove

Morita I . Morita contexts{Morita equivalences.

Morita II . Morita equivalences{Morita contexts.

Morita III . Composition of equivalences↔ tensor products of progenerators.

Fix a ring R and let P be an object of R-Mod. De�ne

Q :� Hom(P, RR),
S :� End(RP).

Claim: there are canonical bimodule structures

RPS , SQR , RRR , SSS ,
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together with

β : Q ⊗R P −→ S
q ⊗ p 7−→ qp ,

α : P ⊗S Q −→ R
p ⊗ q 7−→ pq

which are homomorphisms of (S, S)- and (R, R)-bimodules, respectively. Explanations
are given below.

1. Recall that according to our conventions, given left module M and N , the el-
ements of Hom(M,N) operate on the right of M. Hence P becomes an (R, S)-
bimodule; the R-linearity of homomorphisms are interpreted as an associativity
law (rp)s � r(ps) for all p ∈ P, r ∈ R, s ∈ S � End(RP).

2. The bimodule structure of Q is given by qr : p 7→ (pq)r; sq : p 7→ (ps)q for all
q ∈ Q � Hom(P, RR), s ∈ S � End(P) and r ∈ R, according to the rule above.

3. The bimodule structures of R and S come from their ring structures.
4. For given p ∈ P and q ∈ Q, the rules above gives pq ∈ R (it is simply the image of

p under q).
5. On the other hand, qp is the endomorphism of P given by p′(qp) � (p′q)︸︷︷︸

∈R

p for

every p′ ∈ P; it is routine to check that qp is left R-linear.
We have observed that these bimodule structures and the homomorphisms α, β

satisfy various compatibility conditions. These conditions are encoded in the single
assertion that we may de�ne the Morita ring formally as

M :� *.,
R P

Q S
+/-

under the usual matrix multiplication and the operations above, which makesM into
an associative ring. The compatibilities are thus expressed in terms of various “associa-
tivity laws”. For instance, we have the equality in SQR:

(q′p)︸︷︷︸
∈S

q � q′ (pq)︸︷︷︸
∈R

, q , q′ ∈ Q , p ∈ P.(10.1)

To check such relations, one can unfold all the de�nitions in terms of elements of
P and various homomorphisms, which is not di�cult (see [14]). Alternatively, one can
realize everything as arrows, eg. P � Hom(RR, P), R � Hom(RR, RR), and reduce to
the associativity of the composition of morphisms in R-Mod. Take (10.1) for example:

Left hand side �

(
P

q′−→ R
p−→ P

)

︸            ︷︷            ︸
∈S

q−→ R

� P
q′−→

(
R

p−→ P
q−→ R

)

︸            ︷︷            ︸
∈R

� right hand side.
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Exercise 10.2.2. Find out the other compatibility relations and verify them.

De�nition 10.2.3. The 6-tuple (R, P,Q , S; α, β) is called the Morita context attached to
the left R-module P.

If we work with the categories of right modules as in [12, 14], say starting from an
object PR of Mod-R, then Q :� Hom(P, RR) will be an (R, S)-bimodule where S :�
End(PR) and P is an (S, R)-bimodule. The Morita ringMright in this setup di�ers from
M by a matrix transpose, namely

Mright :� *.,
R Q

P S
+/- .

10.3 Progenerators
Fix a ring R.

Proposition 10.3.1. Let P be a left R-module and construct the 6-tuple (R, P,Q , S; α, β) as
in the previous section.

1. P is a generator in R-Mod if and only if α : P ⊗S Q → R is surjective.

2. If P is a generator in R-Mod, then

(a) α is an isomorphisms between (R, R)-modules;
(b) Q ≃ Hom(PS , SS) as (S, R)-bimodules;
(c) P ≃ Hom(SQ , SS) as (R, S)-bimodules;
(d) R ≃ End(PS) ≃ End(SQ) as rings.

The isomorphisms above are all canonical.

Before beginning the proof, recall that according to our earlier conventions, Hom(PS , SS)
operates on the left of P since we are considering right S-modules here. The (S, R)-
bimodule structure on Hom(PS , SS) is

s f r : p 7→ s f (rp)︸︷︷︸
∈S

, p ∈ P, s ∈ S, r ∈ R, f ∈ Hom(PS , SS).

Likewise Hom(SQ , SS) operates on the right of Q and is equipped with a natural (R, S)-
bimodule structure.

Proof. Recall the notion of the trace ideal Tr(RP) of P (De�nition 10.1.9). By Proposition
10.1.10, RP is a generator if and only if Tr(RP) � R. By the very de�nition of α, it
amounts to the surjectivity of α. Hence the �rst assertion follows.

The “associativity laws” will be extensively used in the following arguments. As-
sume that RP is a generator. We have shown that there is an equation

∑

i

pi qi � 1 ∈ R, pi ∈ P, qi ∈ Q.
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Let us begin with the assertion (a). The surjectivity of α is known. If 0 �
∑

j p′j q
′
j for

some p′j ∈ P, q′j ∈ Q, then we have

∑

j

p′j ⊗ q′j �
∑

i , j

p′j ⊗ q′j (pi qi)

�

∑

i , j

p′j ⊗ (q′jpi)
︸︷︷︸
∈S

qi �
∑

i , j

p′j (q′jpi) ⊗ qi

�

∑

i

*.,
∑

j

p′j q
′
j
+/- pi ⊗ qi � 0

in P ⊗S Q. This proves the injectivity of α. The compatibility with (R, R)-bimodule
structures is easy to check.

As for the assertion (b), de�ne λ : Q → Hom(PS , SS) by the “left multiplication
action”, that is:

λ(q)p � qp ∈ S, q ∈ Q , p ∈ P.

The S-linearity of λ(q) follows from various “associativity laws” mentioned before.
Claim: λ is an isomorphism between (S, R)-modules.
⋆ Injectivity of λ. If qp � 0 for all p ∈ P, then

q � q · 1R �

∑

i

q(pi qi) �
∑

i

(qpi)qi � 0

by associativity laws.
⋆ Surjectivity of λ. Let f ∈ Hom(PS , SS), we have

f p � f
*..,

*..,
∑

i

pi qi︸︷︷︸
∈R

+//-
p

+//-
�

∑

i

f ((piqi)p) �
∑

i

f (pi ( qip︸︷︷︸
∈S

))

�

∑

i

( f pi︸︷︷︸
∈S

)(qi p) �
∑

i

(( f pi)qi)p � *,
∑

i

( f pi)qi+- p

for all p ∈ P. Hence f � λ(
∑

i ( f pi)qi).
The compatibility of (S, R)-bimodule structures is straightforward and is left to the
reader. This proves (b) and the proof of (c) is similar.

Let us prove (d). De�ne σ : R → End(PS) and τ : R → End(SQ) by left and right
multiplication, respectively. This makes sense since P (resp. Q) is an (R, S)-bimodule
(resp. (S, R)-bimodule). They are evidently ring homomorphisms. We set out to show
that σ is an isomorphism.
⋆ Injectivity of σ. Let r ∈ R be such that rp � 0 for all p ∈ P, i.e. σ(r) � 0. Then

r � r · 1 �
∑

i r(piqi) �
∑

i (rpi)qi � 0.
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⋆ Surjectivity of σ. Let f ∈ End(PS). For every p ∈ P we have

f p � f *,*,
∑

i

pi qi+- p+- �

∑

i

f (pi ( qi p︸︷︷︸
∈S

)) �

*......,

∑

i

( f pi)qi

︸      ︷︷      ︸
∈R

+//////-
p

for all p ∈ P. Hence f � σ(
∑

i ( f pi)qi).
The case of τ is similar. �

Proposition 10.3.2. Let (R, P,Q , S; α, β) be as before.

1. P is projective and �nitely generated in R-Mod if and only if β is surjective.

2. If P is projective and �nitely generated in R-Mod, then

(a) β : Q ⊗R P → S is an isomorphism of (S, S)-bimodules;
(b) Q ≃ Hom(RP, RR) as (S, R)-bimodules;
(c) P ≃ Hom(QR , RR) as (R, S)-bimodules;
(d) S ≃ End(RP) ≃ End(QR) as rings.

The isomorphisms above are all canonical.

The bimodule structures of Hom(RP, RR) and Hom(QR , RR) are de�ned in the stan-
dard manner, as in the previous proposition.

Proof. We shall only give the proof for statement 1. The arguments for statement 2 are
parallel to those in the previous proposition and will be omitted.

The surjectivity of β is equivalent to an equation in S of the form

1 �

n∑

i�1
qi pi , qi ∈ Q , pi ∈ P.

This amounts to the existence of qi ∈ Hom(RP, RR) such that p �
∑

i ( pqi︸︷︷︸
∈R

)pi for all

p ∈ P. Equivalently, we have a homomorphism

RR⊕n
�

n⊕

i�1
Rei

f−→ RP

ei 7−→ pi ,

together with a homomorphism s : P →⊕n
i�1 Rei given by p 7→ ∑n

i�1(pqi)ei satisfying

f ◦ s � id.

By Proposition 10.1.2, this amounts to the assertion that RP is �nitely generated and
projective. �
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The aforementioned results concerning left R-modules apply to the setup of right
R-modules as well – simply replace R by Rop.

Proposition 10.3.3. If P is a progenerator in R-Mod, then SQ, PS and QR are all progenerators
in suitable categories and α, β are isomorphisms.

Proof. The assertions concerning α and β are already proved. Let us show that SQ is a
progenerator. We recall from Proposition 10.3.2 the following “re�exivity”

Hom(SQ , SS) ≃ P,
End(SQ) ≃ R.

Both isomorphisms are canonical. From the left S-module Q we associate a Morita
context, in which the objects derived from SQ are decorated with quotation marks:

(S,Q , “Q′′, “S′′; “α′′, “β′′).

From re�exivity, one gets canonical identi�cations “S”=R and “Q”=P, under which
the “β” becomes

α : P ⊗S Q → R,

an isomorphism of (R, R)-bimodules. Hence Q is a progenerator in S-Mod. The re-
maining cases are similar: one constructs suitable Morita contexts and concludes from
the bijectivity of α and β. Cf. the next Corollary and Remark. �

In the preceding proof we have observed that the “α” and “β” for SQ are identi�ed
with the β and α for RP, respectively. The cases for PS and QR are similar. Let us
summarize these re�exivities below.

Corollary 10.3.4. Assume that P is a progenerator in R-Mod and let (R, P,Q , S; α, β) be the
corresponding Morita context. Then α, β are isomorphisms and

(S, SQ , P, R; β, α)
(S, PS ,Q , R; β, α)
(R,QR , P, S; α, β)

are Morita contexts corresponding to the progenerators SQ, PS, QR respectively.

Remark 10.3.5. We leave it to the reader to de�ne the Morita contexts for right modules
which appear above. See also [14, §18C] or [12].

10.4 Main theorems
Warning: the proofs below will be sketchy.
Convention 10.4.1. In what follows, a category equivalence between additive categories
C and C′ is a functor F : C → C′ such that there exists a functor G : C′ → C satisfying
F ◦ G ≃ idC′, G ◦ F ≃ idC . Such (F,G) is called a pair of mutually inverse category
equivalences. By isomorphism of equivalences we mean isomorphism in the sense of
functors. The author apologizes for these nonstandard terminologies.
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Theorem 10.4.2 (Morita I). Let P be a progenerator in R-Mod and (R, P,Q , S; α, β) be the
corresponding Morita context. Then there are mutually inverse category equivalences

R −Mod
Q⊗R− // S −Mod,
P⊗S−

oo

Mod − R
−⊗RP //Mod − S
−⊗SQ

oo

Proof. We have isomorphisms of functors from R-Mod to itself

P ⊗S (Q ⊗R −) ≃ (P ⊗S Q) ⊗R − α⊗id−−−−→ R ⊗R − � idR−mod(−).

Similarly we have isomorphisms of functors from S-Mod to itself

Q ⊗R (P ⊗S −) ≃ (Q ⊗R P) ⊗S −
β⊗id−−−→ S ⊗S − � idS−mod(−).

Thus the �rst equivalence is established. The proof for the other one is similar. �

Remark 10.4.3. Let P be a progenerator of R-Mod and de�ne Q, S accordingly. We have
an isomorphism of functors

Q ⊗R − −→ Hom(RP,−)
q ⊗ ♣ 7−→ [p 7→ pq︸︷︷︸

∈R

♣]

from R-Mod to S-Mod. Indeed, the isomorphism is evident for RP � RR; the general
case follows by realizing RP as a direct summand of some RR⊕I by Proposition 10.1.2.
Likewise, we deduce

P ⊗S − ∼→ Hom(SQ ,−),

− ⊗R P
∼→ Hom(QR ,−),

− ⊗S Q
∼→ Hom(PS ,−)

by applying Proposition 10.3.3.

Theorem 10.4.4 (Morita II). Let R, S be rings. Given a pair of mutually inverse equivalences

R −Mod
F // S −Mod
G
oo

we put Q :� F(RR) and P :� G(SS). There exist canonical bimodule structures RPS, SQR and
isomorphisms of functors

F(−) ≃ Q ⊗R −,
G(−) ≃ P ⊗S −.

Moreover, the Morita context associated to RP can be identi�ed with (R, P,Q , S; α, β) for ap-
propriate α,β.
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Proof. We have End(RP) ≃ End(SS) � S and End(SQ) � End(RR) � R (right multipli-
cations) given by the functors F and G, which yield the required bimodule structures.
Being a progenerator is a categorical property, hence P and Q are progenerators (cf.
Example 10.1.7).

There are isomorphisms Hom(RP, RR)
∼→ Hom(SS, SQ) ≃ Q given by the functor

F; it is routine to check that they respect the relevant (S, R)-bimodule structures. This
proves the assertion on the identi�cation of Morita contexts. Moreover, by Remark
10.4.3 we get isomorphism of functors

F ≃ Hom(SS, F(−)) ≃ Hom(RP,−) ≃ Q ⊗R −.
Similarly, G ≃ P ⊗S −. �

De�nition 10.4.5. Let A, B be rings. An (A, B)-bimodule ACB is called faithfully bal-
anced if the multiplications maps A → End(CB) and B → End(AC) are both ring iso-
morphisms. It is called an (A, B)-progenerator if ACB is faithfully balanced and AC is
a progenerator.

Note a hidden left-right symmetry in the de�nition: if ACB is an (A, B)-progenerator,
then CB is also a progenerator in Mod-B (i.e. Bop-Mod) by Proposition 10.3.3, since B
may be identi�ed with End(AC).

Corollary 10.4.6. If P is a progenerator in R-Mod, then RPS (resp. SQR) is an (R, S)-
progenerator (resp. (S, R)-progenerator).

Proof. Combine the Propositions 10.3.1, 10.3.2 and 10.3.3. �

Theorem 10.4.7 (Morita III). Let R, S be rings. Then the isomorphism classes of equiva-
lences F : R −Mod → S −Mod form a set, which is in canonical bijection with the (R, S)-
progenerators. Furthermore, composition of functors corresponds to ⊗-product of bimodules:
given rings R, S and T,

R −Mod
RP′S //

RPT :�P′⊗SP′′
22S −Mod SP′′T // T −Mod(10.2)

commutes up to isomorphism.

Proof. By the Theorems 10.4.2 and 10.4.4, up to isomorphisms, the (R, S)-progenerators
RPS are in bijection with the equivalences G : S −Mod → R −Mod. More precisely,
G � P ⊗S −. Hence the isomorphism classes of such equivalences form a set. The
compatibility between composition and ⊗-product in the sense of (10.2) is now clear.

�

Now take R � S. It follows immediately that the isomorphisms classes of (R, R)-
progenerators form a set, which is a monoid with identity element RRR. It is actually a
group by Proposition 10.3.2. Thus the following corollary is immediate.

Corollary 10.4.8. The isomorphism classes of self-equivalences of R-Mod form a group, which
is isomorphic to the group of isomorphisms classes of (R, R)-progenerators under ⊗-product.
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10.5 Applications
Recall the notion of Morita equivalence in De�nition 10.2.1.

Proposition 10.5.1. The notion of Morita equivalence for rings is left-right symmetric.

Proof. Two rings R and S are Morita equivalent (in the sense of left modules) if and only
if there exists an (R, S)-progenerator RPS, by Theorems 10.4.4 and 10.4.7. Alternatively,
we may view P as a (Sop, Rop)-progenerator, hence Rop and Sop are Morita equivalent.

�

As another application, let us deduce the Wedderburn-Artin structure Theorem
from Morita theory. Such is the approach adopted in [12].

Theorem 10.5.2. Let R be a left semisimple ring. There exist n ∈ �≥1, division rings Di and
ni ∈ �≥1 for i � 1, . . . , n such that

R ≃
n∏

i�1
Mni (Di).

Moreover, the datum (Di , ni)1≤i≤n is unique up to permutation and isomorphisms.

Proof. We will omit the uniqueness part. Let R be a left semisimple ring. There is a
decomposition

RR �

n⊕

i�1
a⊕mi

i

into simple submodules (i.e. minimal left ideals), such that ai ≃ a j ⇐⇒ i � j; as in the
previous approaches, the �niteness follows by looking at 1 ∈ R. By Proposition 10.1.10,
P :�

⊕n
i�1 ai is a generator. It is a progenerator as RP is clearly a direct summand of

RR.
Let (R, P,Q , S; α, β) be the attached Morita context, with

S � End(RP) �
n∏

i�1
Di , Di :� End(Rai) (division ring).

Set ni :� dimDi (ai) for each 1 ≤ i ≤ n. Since PS is a progenerator by Proposition
10.3.3, hence �nitely generated over S, we deduce ni < ∞ for all i. Proposition 10.3.1
implies

R ≃ End(PS) �
n∏

i�1
EndDi (ai) ≃

n∏

i�1
Mni (Di)

as rings. �

Exercise 10.5.3. How many proofs have we given for the Wedderburn-Artin theorem?
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Exercise 10.5.4. Let C be an additive category. De�ne its center as

Z(C) :� End(idC)

which is a ring. More precisely, an element of Z(C) is a family (ϕM ∈ Hom(M,M))M ,
where M ranges over the objects of C, such that for every morphism f : M → N in C
the following diagram commutes.

M
f
��

ϕM // M
f
��

N ϕN
// N

1. For C � R−Mod, show that Z(C) ≃ Z(R) canonically, where Z(R) stands for the
center of R. Hint: describe ϕRR and show that it determines the other endomor-
phisms ϕM in a given element of Z(C).

2. Show that if two rings R and S are Morita equivalent, their centers must be iso-
morphic.

3. Let R, S be rings and let RMS be a faithfully balanced (R, S)-bimodule (De�nition
10.4.5). Show that the action by left R-multiplication induces an isomorphism
Z(R)

∼→ End(RMS). Similarly, Z(S)
∼→ End(RMS) via right S-multiplication.

Now deduce part 2 from Morita theory.
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LECTURE 11

REPRESENTATIONS OF FINITE
GROUPS

In this lecture we will proceed into the realm of representation theory of �nite groups.
For a historical account, we recommend the excellent book [6] by Curtis.

11.1 Representation of algebras
Fix a �eld F. We begin by summarizing the representation theory of �nite-dimensional
F-algebras, i.e. the study of their left modules. Some results hold for left artinian rings
as well, but the author is too lazy to single them out.

Let A be a �nite-dimensional F-algebra. By the theory of Jacobson radical, Ā :�
A/rad(A) is a semisimple F-algebra. From the Wedderburn-Artin Theorem, we have a
ring isomorphism

Ā �

r∏

i�1
End((ai)Di )︸        ︷︷        ︸

:�Bi

(11.1)

wherea1, . . . , ar are representatives of isomorphism classes of the simple left A-submodules
(i.e. the minimal left ideals) of Ā, and

Di :� End(Aai) � End(Biai), (division F-algebra)

acts on the right of ai by our convention.
Upon inspecting our proof of the Wedderburn-Artin Theorem, the isomorphism

(11.1) is given by sending a ∈ A to the family Li (a) : ai → ai , where Li (a) : x 7→ ax, for
i � 1, . . . , r. It is convenient to treat each component Bi separately. For a �xed index i,
we shall temporarily drop the index and write a, D, B to alleviate notations. Put

a′ :� Hom(aD ,DD).
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Note that a (resp. a′) is a (B,D)-bimodule (resp. (D , B)-bimodule). Moreover, in
the last part of the previous lecture we have seen that Ba is a progenerator, hence

a′ ≃ Hom(Ba , BB).

The natural homomorphism

a ⊗
D
a′
∼→ B � End(aD)

v ⊗ v̌ 7→ [x 7→ v (v̌x)︸︷︷︸
∈D

]

of (B, B)-bimodules turns out to be an isomorphism. Indeed, this can be seen by the
identi�cations B � Mn (D) and aD � (DD)⊕n , for some n.

Variation of the index i yields the following bimodule version of Wedderburn-Artin
Theorem.

Proposition 11.1.1. We have isomorphisms of (A,A)-bimodules

AĀA
∼−→

r⊕

i�1
End((ai)Di )

∼←−
r⊕

i�1
ai ⊗Di a

′
i

in which a 7→ (Li (a))r
i�1 and vi ⊗ v̌i 7→ vi (v̌i (·)).

Proposition 11.1.2. The left ideals a1, . . . ar form a complete set of representatives of the simple
left A-modules. Each simple left A-module is �nite-dimensional over F.

Proof. The simple A-modules are just simple Ā-modules. Thus we may assume A � Ā.
Since a simple left A-module is necessarily a quotient of AA, which is �nite-dimensional
over F, we conclude by the Wedderburn-Artin Theorem. �

Consider an arbitrary �eld extension E ⊃ F. Write AE :� A ⊗
F

E ≃ E ⊗
F

A. The
assignment M 7→ ME �ts in to a functor from A-Mod to AE-Mod.

De�nition 11.1.3. Let M be a simple left A-module. We say that M is absolutely simple
if ME is simple for every �eld extension E.

De�nition 11.1.4. A �eld extension E ⊃ F is called a splitting �eld of A if every simple
left AE-module is absolutely simple. In this case we also say that E splits A.

Theorem 11.1.5. Let M be a simple left A-module. The following statements are equivalent:

1. M is absolutely simple;

2. ME is simple for every �nite extension E of F;

3. End(AM) � F;

4. the homomorphism A→ EndF (M) given by the left A-module structure is surjective.

In particular, for algebraically closed F the notion of absolute simplicity is redun-
dant.
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Proof. (1)⇒ (2) is trivial.
(2)⇒ (3). Let ϕ ∈ End(AM). Let λ be an eigenvalue of ϕ as an element of EndF (M)

and take E ∋ λ. Set ϕE :� E ⊗
F
ϕ ∈ EndE (ME). Then ϕE − λ is non-invertible in

End(AE ME), which is a division ring. Hence ϕE � λ is a scalar operator, and so is ϕ.
(3)⇒ (4). Apply the Density Theorem.
(4)⇒ (1). For every �eld extension E, the homomorphism AE → EndE (ME) is still

surjective. Thus the simplicity of ME follows from linear algebra. �

Corollary 11.1.6. A �eld E is a splitting �eld of A if and only if AE is a direct product of matrix
algebras over E. Thus this de�nition is compatible with the one for central simple algebras.

Proof. Use (3) of the preceding theorem and apply Proposition 11.1.1 to AE. �

Exercise 11.1.7. Let M, N be simple left A-modules. Show that Hom(ME ,NE) , {0} if
and only if M ≃ N . Hint: Hom(ME ,NE) � Hom(M,N) ⊗

F
E.

Proposition 11.1.8. Let E/F be a �eld extension. For every simple left AE-module N , there ex-
ists a simple left A-module M such that N is a Jordon-Hölder factor of ME i.e. N is a subquotient
(= quotient of a submodule) thereof.

Proof. We know that N must be a Jordon-Hölder factor of the left AE-module AE, which
is obtained from AA by applying E ⊗F −. Let

{0} � F0 ⊂ F1 ⊂ · · · ⊂ Fn � AA

be a composition series of AA, i.e. with simple successive quotients Mi :� Fi/Fi−1. Then
(Fi)E form an ascending chain of left AE-submodules of AE, with successive quotients
(Mi)E. Indeed, E ⊗F − is an exact functor in the sense that given a short exact sequence

0→ M′→ M → M′′→ 0

in A-Mod, one can check that

0→ M′E → ME → M′′E → 0

is exact in AE-Mod, say by choosing an F-basis of E.
By Schreier’s re�nement theorem, we may re�ne ((Fi)E)n

i�0 to get a composition se-
ries of AE. Hence N must appear as a Jordan-Hölder factor of some (Mi)E. �

Corollary 11.1.9. If E is a splitting �eld for A, then so is every extension L of E.

Proof. Let Q be a simple left AL-module. By the preceding Proposition, Q is a subquo-
tient of NL for some simple left AE-module N . But NL is simple since E is a splitting
�eld, hence Q � NL. Now for every extension L′/L we have QL′ � NL′ which is again
simple in AL′-Mod. �

Corollary 11.1.10. There exists a �nite extension E of F that splits A.
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Proof. Pick an algebraic closure F̄ of F. By Corollary 11.1.6, F̄ is a splitting �eld of A.
Let M′1, . . . .M

′
n be a complete set of representatives of simple left AF̄-modules. For each

1 ≤ i ≤ n, we may choose an F̄-basis of M′i and by inspecting the actions of an F-basis of
A on M′i , we see that there exist a �nite extension Ei/F, a left AEi -module Mi such that
M′i � F̄⊗

E
Mi . Take E to be the compositum of E1, . . . , En in F̄, we obtain left AE-modules

M1, . . . ,Mn .
By Theorem 11.1.5, M1, . . . ,Mn are absolutely simple left AE-modules. If M is a

simple left AE-module, then there exists 1 ≤ i ≤ n such that

{0} , HomF̄−Mod(MF̄ ,M
′
i ) � HomE−Mod(M,Mi) ⊗

E
F̄

︸                                                         ︷︷                                                         ︸
by linear algebra

.

Hence M � Mi . It follows that E is a splitting �eld for A. �

Exercise 11.1.11. Let f (X) be a polynomial over F and set A :� F[X]/( f (X)). Describe
the splitting �elds of A and reconcile the notions of “splitting �eld” in representation
theory and �eld theory.

11.2 Characters
Fix a �eld F. For every F-algebra A and a left A-module M which is �nite-dimensional
over F, we de�ne

χM : A→ F

by setting χM (a) � Tr(a |M); the notation means that we calculate the trace by regarding
a as an element of EndF (M). It depends only on the isomorphism class of M.

We call χM the character of M. Let [A,A] be the additive subgroup of A generated by
elements of the form x y− yx, x , y ∈ A. Then χM induces an F-linear map A/[A,A]→ F
since Tr(x y − yx |M) � 0. In fact χM vanishes on [A,A] + rad(A).
Lemma 11.2.1. If 0→ M′→ M → M′′→ 0 is a short exact sequence in A-Mod, then

χM � χM′ + χM′′ .

Proof. Linear algebra. �

Hereafter, we revert to the assumption that dimF A < +∞.
From the previous Lemma we learn that χM only “sees” the Jordan-Hölder factors

of M. In favorable circumstances, however, it will determine the modules.
Theorem 11.2.2. The characters of absolutely simple left A-modules are linearly independent
as elements of HomF (A/[A,A], F).
Proof. Enumerate the isomorphism classes of absolutely simple left A-modules by M1, . . . ,Ms .
By Proposition 11.1.1, for every 1 ≤ i ≤ s there exists ai ∈ A such that

Tr(ai |M j) �


1, i � j,
0, i , j.

In any linear combination
∑s

j�1 c jχM j , the coe�cient ci can be read o� by evaluation at
ai , hence the linear independence. �
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We do not attempt to record all the generalizations or improvements of this theorem.
Below is an easy variant.

Theorem 11.2.3. Suppose that F is of characteristic zero. The characters of simple left A-
modules are linearly independent over F. Consequently, χM determines the Jordan-Hölder fac-
tors of M, for any left A-module that is �nitely-dimensional over F.

The second assertion does not hold in general when char(F) � p > 0. Indeed, choose
non-isomorphic simple modules M1, M2, then M⊕p

1 and M⊕p
2 have the same character,

say zero, but they are not isomorphic

Proof. Enumerate the isomorphism classes of simple left A-modules by M1, . . . ,Mr and
copy the previous proof. This time we can only assume that ai acts on Mi as id, which is
certainly linear over Di :� End(AMi), and ai acts on M j as zero if i , j. Thus Tr(ai |Mi) �
dimF Mi . Now we can apply the assumption char(F) � 0 to determine the coe�cients
ci in any linear combination

∑r
j�1 c jχM j . �

When A is not semisimple, the study of simple A-modules only reveals a very small
portion of information on the algebra A. It turns out that the indecomposable A-modules
have much richer (and harder!) structure. Unfortunately, we are unable to address
these questions in this course.

11.3 The group algebra
Let k be a commutative ring and G be any group. The group k-algebra kG is the free k-
module generated by the symbols g ∈ G, that is, the elements in kG are formal k-linear
combinations

∑

g∈G

ag g , ∀g , ag ∈ k, ag � 0 for all but �nitely many g ,

and the multiplication in kG is de�ned on the generators by

g · h � gh (multiplication in G), g , h ∈ G,

then extended linearly to kG. The identity element of kG is 1 ∈ G. We may regard G as
a distinguished basis of the k-vector space kG.

There is a universal property characterizing kG. Let U : k − Alg → Grp be the
functor which maps a k-algebra R to its group of units R×. Then the natural inclusion
G ֒→ kG induces an isomorphism

Homk−Alg(kG,−) ≃ HomGrp(G,U (−))

of functors from k-Alg to Sets. In fact it is also functorial in G.
In what follows, we will specialize to the case where k � F is a chosen �eld, and

speak of FG as the group algebra associated to G.
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De�nition 11.3.1. A representation of G over F is a pair (V, ρ) where V is an F-vector
space and ρ : G → AutF (V) is a group homomorphism. A morphism (also known as
intertwining operator) between two representations (V1, ρ1) and (V2, ρ2) is an F-linear
map f : V1 → V2 such that the diagram

V1
f //

ρ1(g)
��

V2

ρ2(g)
��

V1 f
// V2

commutes for every g ∈ G.

In practice we will often drop V or ρ from the datum (G, ρ). The F-vector space of
morphisms from (V1, ρ1) to (V2, ρ2) is denoted as HomG (V1,V2).

Thus one can talk about the category RepF (G) of representations of G over F, and
de�ne subrepresentations, quotient representations, etc., in the obvious manner. It is
sometimes more convenient, however, to pass to the category FG-Mod.

Proposition 11.3.2. There is an equivalence between the categories RepF (G) and FG-Mod,
given as follows. Let (ρ,V) be a representations of G over F, we make V into an FG-module by
letting

∑
g ag g act as

∑
g agρ(g). The morphisms are left untouched.

Proof. Quite trivial. Use the fact

{FG −module structures on V } � HomF−Alg(FG, EndF (V))
� HomGrp(G,AutF (V))

from the universal property of FG. �

For example, a subrepresentation is just an FG-submodule, and we may talk about
quotient representations as well. A nonzero representation of G over F is called irre-
ducible if there is no subrepresentation besides {0} and itself, i.e. the corresponding
FG-module is simple. The group algebra FG has some extra structures, however. For
example we have

FG
∼→ (FG)op, g 7→ g−1,

FG ⊗F FH
∼→ F(G × H), g ⊗ h 7→ gh , g ∈ G, h ∈ H.

Let us consider some elementary operations on representations.

Change of �elds Let (V, ρ) be a representation of G over F and E/F be a �eld extension.
Then (E⊗

F
V, 1⊗ρ) is a representation of G over E. This corresponds to the functor

V 7→ VE from FG-Mod to EG-Mod studied before.

Direct sum The same as the ⊕ in FG-Mod.

Tensor product Let (V1, ρ1), (V2, ρ2) be representations, then V1⊗FV2 becomes a repre-
sentation by letting g ∈ G act by (ρ1⊗ρ2)(g) � ρ1(g)⊗ρ2(g). In module-theoretic
terms, it corresponds to the homomorphism of F-algebras FG → FG ⊗

F
FG �

F(G × G) determined by g 7→ g ⊗ g.
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External tensor product Let (Vi , ρi) be a representation of Gi over F, for i � 1, 2. Then
V1 ⊗F V2 becomes a representation of G1 ×G2 over F by letting (g1, g2) ∈ G1 ×G2
act by (ρ1 ⊠ ρ2)(g1, g2) � ρ1(g1) ⊗ ρ2(g2). The module-theoretic interpretation is
similar to ⊗.

Trivial representation The trivial representation of G over F is the 1-dimensional rep-
resentation (F, 1) such that each g ∈ G acts as id. It corresponds to the homomor-
phism FG → F given by

∑
g cg g 7→ ∑

g cg .

Hom-spaces Let (V1, ρ1), (V2, ρ2) be representations of G over F. The space HomF (V1,V2)
is equipped with a representation of G: we let g ∈ G act by

[ f ∈ HomF (V1,V2)] 7−→
[
ρ2(g) ◦ f ◦ ρ1(g)−1 ∈ HomF (V1,V2)

]
.

One readily checks that the space of intertwining operators HomG (V1,V2) gets
identi�ed with the space HomF (V1,V2)G of G-�xed elements.

Contragredient representation Let (V, ρ) be a representation of G over F. The contra-
gredient V̌ is the representation HomF (V, F) above, where F denotes the trivial
representation of G over F. To get a module-theoretic interpretation, we note that
V̌ � HomF (V, F) � Hom(VF , FF) is a right FG-module by regarding V as an
(FG, F)-bimodule in the usual way. More precisely, we have

λa : v 7→ λ(av), a ∈ FG, λ ∈ Hom(VF , FF).

Right FG-modules are just left (FG)op-modules. To obtain a left FG-module struc-
ture, we apply FG

∼→ (FG)op, g 7→ g−1.

Pull-back/restriction/in�ation Let ϕ : H → G be a group homomorphism. Then we
may deduce a representation of H from a representation of G. In fact, ϕ induces
an F-algebra homomorphism FH → FG, hence a functor from FG-Mod to FH-
Mod. When H → G is an inclusion (resp. quotient), the pull-back is called the
restriction (resp. in�ation) from G to H.

Reduction Let N be a normal subgroup of G and (V, ρ) be a representation of G over
F. Set VN :� {v ∈ V : ∀ν ∈ N, ρ(ν)v � v}. Then VN becomes a representation of
G/N .

Exercise 11.3.3. Let (V1, ρ1), (V2, ρ2) be representations of G over F

1. Show that V1 ⊗ V2 is equal to the restriction of the G × G-representation V1 ⊠ V2
to G via the diagonal embedding G ֒→ G × G, i.e. g 7→ (g , g).

2. Assume V1 is �nite-dimensional over F. Show that the standard isomorphism
V̌1 ⊗F V2

∼→ HomF (V1,V2) intertwines the G-representation structures de�ned
via ⊗-product and Hom-sets, respectively.

From now on, we make the assumption

G is �nite.
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So FG is a �nite-dimensional F-algebra and the results in §11.1 are applicable. In what
follows an FG-module will always mean a left FG-module, unless otherwise speci�ed.

De�nition 11.3.4. De�ne the absolutely irreducible representations of G over F as the
absolutely simple FG-modules, by the dictionary Proposition 11.3.2. A �eld F is called
a splitting �eld of G, if FG splits over F; in this case we also say that G splits over F.

In particular, G splits over every algebraically closed �eld, and for every F there
exists a �nite extension E/F that splits G. Likewise, a representation is called faithful
if the corresponding FG-module is.

Theorem 11.3.5 (Maschke). The group algebra FG is semisimple if and only if char(F) ∤ |G |.

Proof. Assume char(F) ∤ |G |. Let V be an FG-module and W be a submodule. Take an
F-vector subspace W′ such that V � W ⊕W′ and let π : V ։ W be the corresponding
projection map. Set

π′ :� |G |−1
∑

g∈G

g ◦ π ◦ g−1.

It is obvious that π′ ∈ HomG (V,W ). Moreover, π′|W � π |W � id. It follows that
π′ : V ։W is a projection operator in the sense of FG-modules, thus

V � W ⊕ ker(π′).

To show the “only if” part, put z :�
∑

g∈G g. We have xz � zx � z for all x ∈ G, thus
z ∈ Z(FG) and

z2
�

∑

x∈G

xz � |G |z � 0.

It follows that Fz is a two-sided nilpotent ideal of FG, thus rad(FG) ⊃ Fz , {0}. �

Thus the study of group representations can be divided into two �avors:
⋆ Ordinary representation theory, if char(F) ∤ |G |;
⋆ Modular representation theory (after L. E. Dickson), if char(F) | |G |.

We will mainly concentrate on the ordinary case.

De�nition 11.3.6. Assume char(F) ∤ |G | and let W be a (left) FG-module. By Theorem
11.3.5, we may write W ≃⊕

V V⊕nV where V ranges over the isomorphism classes of
simple FG-modules. The cardinal number nV here is called the multiplicity of V in W .
It is uniquely determined. Indeed, put D :� EndFG (V) so that V becomes an (FG,D)-
bimodule and HomFG (V,W ) becomes a left D-vector space, then the so-called V-isotyic
part V⊕nV in W is canonically isomorphic to the left FG-module

V ⊗
D

HomFG (V,W )

via v ⊗ ϕ 7→ vϕ ∈ W . (Reminder: this technique has appeared in the lecture on central
simple algebras.) Hence nV � dimD HomFG (V,W ).
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11.4 Representations and characters of �nite groups
As before, let F be a �eld and G be a �nite group. The representations below are as-
sumed to be �nite-dimensional. A representation (V, ρ) of G over F can be regarded as
a left FG-module. The character χV : FG/[FG, FG] → F can be regarded as a function
on G via the standard inclusion G ֒→ FG. The character χV is a class function on G,
namely

χV (x−1 yx) � χV (y), x , y ∈ G.

Indeed, x−1 yx − y � x−1 yx − yxx−1 ∈ [FG, FG] and these elements generate [FG, FG].
One readily veri�es the equalities

χV (1) � dimF V,
χV⊕W (g) � χV (g) + χW (g),
χV⊗W (g) � χV (g)χW (g),

χV̌ (g) � χV (g−1),

for all representations V,W of G over F and all g ∈ G (for the last one, recall the clas-
sical fact that a matrix and its transpose have the same trace). Characters arising from
irreducible representations are called irreducible characters.

Exercise 11.4.1. Give complete proofs of these equalities.

Proposition 11.4.2 (Orthogonality relations for matrix coe�cients). Let (V, ρ), (W, σ)
be irreducible representations of G over F. For v̌ ⊗ v ∈ V̌ ⊗ V and w̌ ⊗ w ∈ W̌ ⊗W , we have

∑

g∈G

〈v̌ , ρ(g)v〉〈σ̌(g)w̌ , w〉 � 0.

if the representations V and W are not isomorphic. If (V, ρ) � (W, σ) is absolutely irreducible,
we have

dimF V ·
∑

g∈G

〈v̌ , ρ(g)v〉〈σ̌(g)w̌ , w〉 � |G |〈v̌ , w〉〈w̌ , v〉.

Here we write 〈v̌ , v〉 to denote the evaluation of v̌ : V → F at v.

Proof. Consider the element HomF (V,W ) given by

v 7→ 〈v̌ , v〉w.
We can make it into an intertwining operator by averaging over G. More precisely, we
create the element

f : v 7→
∑

g∈G

〈v̌ , ρ(g)(v)〉σ(g−1)w ∈ W

in HomG (V,W ). Then 〈w̌ , f (v)〉 is equal to
∑

g∈G

〈v̌ , ρ(g)v〉〈σ̌(g)w̌ , w〉.
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However HomG (V,W ) � {0}when V and W are not isomorphic as representations over
F. This proves the �rst assertion.

Assume now (V, ρ) � (W, σ) is absolutely irreducible. The element f ∈ EndG (V)
must be a scalar operator λ · id since V is absolutely irreducible, by Theorem 11.1.5.
Taking traces yields

Tr( f ) � dimF V · λ � |G | · Tr [v 7→ 〈v̌ ,−〉w] � |G |〈v̌ , w〉.
This determines the endomorphism dimF V · f . Evaluation of dimF V · 〈w̌ , f (v)〉 gives
the second assertion. �

In order to simply the exposition, henceforth we work in the framework of ordinary
representation theory by assuming

char(F) ∤ |G |.

Lemma 11.4.3. Let G×G act on FG by setting R(g , h) : a 7→ gah−1, so that (FG, R) becomes
a representation of G ×G. Assume F is a splitting �eld of G. There is a canonical isomorphism
of representations of G × G

(FG, R) ≃
⊕

V :irred.
V ⊠ V̌ .

Furthermore, we have

Tr(R(x , y)) �
∑

C

|ZG (x) |1C (x)1C (y) �
∑

V

χV (x)χV̌ (y)

where, ZG (x) :� {g ∈ G : gx g−1 � x}, C ranges over the conjugacy classes in G, and
1C : G → {0, 1} is its characteristic function.

Proof. In Proposition 11.1.1 we deduced a similar decomposition of the (FG, FG)-bimodule
FG. The isomorphism of F-algebras FG

∼→ (FG)op induced by g 7→ g−1 transforms the
bimodule into that left FG × FG � F(G × G)-module (FG, R). The division rings Di in
Proposition 11.1.1 reduce to F by our splitting assumption. The �rst assertion follows.

Observe that R(x , y) permutes the basis G of FG, the �xed point set being {γ ∈ G :
xγ � γy}. The �xed-point set is nonempty only when x and y are conjugate, in which
case it has the same cardinality as ZG (x). The second assertion follows at once. �

The trace formula above can be used to deduce many basic results on the represen-
tation theory of �nite groups: see [26].

Lemma 11.4.4. Let (V, ρ) be an irreducible representation of G and eV ∈ FG be the corre-
sponding idempotent element (cf. the decomposition of FG in Proposition 11.1.1), i.e. left/right
multiplication by eV gives the projection FGFG ։ EndF (V). Then

eV � |G |−1nV ·
∑

g∈G

χV (g−1)g

where nV denotes the multiplicity of V in FGFG. In particular, we have nV , 0 in F.
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Note that nV � dimF V when V is absolutely irreducible, by Proposition 11.1.1.

Proof. Denote by χ the character of FG as a left FG-module. We immediately see that
χ(g) � 0 if g , 1, and χ(1) � |G |. Write eV �

∑
x∈G axx. Therefore

χ(eV g−1) �
∑

x∈G

axχ(x g−1) � ag |G |, ∀g ∈ G.

On the other hand, the presence of eV in χ(eV g−1) cuts o� the contributions outside
V⊕nV in the decomposition of FGFG, thus

χ(eV g−1) � nV · χV (g−1), ∀g ∈ G.

Hence ag |G | � nVχV (g−1), as required. �

Theorem 11.4.5 (Orthogonality relations for characters). Let V and W be irreducible rep-
resentations of G over F. We have

∑

g∈G

χV (g)χW (g−1) �

|G | dimF EndG (V), V ≃W ;
0, otherwise.

Suppose that G splits over F. For x , y ∈ G, we have

∑

V :irred.
χV (x)χV (y−1) �


|ZG (x) |, if x , y are conjugate,
0, otherwise.

Proof. For the �rst assertion, we calculate χW (eV ) using Lemma 11.4.4. If V ; W , then
eV ∈ FG acts trivially on W and we get

∑
g∈G χV (g)χW (g−1) � 0. If V ≃W , then eV acts

as id on W , thereby χW (eV ) � χV (1) � dimF V . A comparison gives
∑

g∈G

χV (g)χV (g−1) � |G |n−1
V dimF V.

Set D :� EndG (V). It remains to show

dimF V � nV dimF D.

Indeed, we have nV � dimD Hom(VD ,DD) � dimD V by Proposition 11.1.1. The second
assertion is even easier: use the Lemma 11.4.3. �

Theorem 11.4.6. Suppose that G splits over F. The F-vector space of class functions G →
F admits two bases: the irreducible characters χV and the characteristic functions 1C of the
conjugacy classes C ⊂ G.

Proof. Evidently the 1C’s form a basis. On the other hand, by Theorem 11.2.2 the irre-
ducible characters χV are linearly independent. It su�ces to show that every 1C can be
written as a linear combination of irreducible characters.
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Let C be a conjugacy class of G and �x an element y ∈ C. Since gx g−1 � y �⇒
ZG (x) � gZG (y)g−1 and di�erent conjugacy classes are disjoint, Lemma 11.4.3 can be
written in the form

|ZG (y) |1C (·) �
∑

V :irreducible/≃
χV (·)χV̌ (y).

Note that |ZG (y) | , 0 in F since char(F) ∤ |G |. Hence 1C lies in the linear span of
irreducible characters. �

Note that the proof actually gives the transition matrix between two bases in terms
of character values.

Corollary 11.4.7. Suppose that G splits over F. Then the number of irreducible representations
of G over F equals that of conjugacy classes in G. Moreover, we have

|G | �
∑

V :irred.
nV dimF V �

∑

V :irred.
(dimF V)2;

the �rst equality actually holds without assuming G split. Here nV stands for the multiplicity
of V in FGFG.

Proof. The �rst assertion has just been proved. The second one follows from Proposition
11.1.1. �

Exercise 11.4.8. Without the splitting assumption, show that
⋆ the number of irreducible representations is less or equal then that of conjugacy

classes;
⋆ |G | � ∑

V :irred. nV · dimF V ≤ ∑
V :irred.(dimF V)2.

Hint. Either pass to the splitting �eld, or use the decomposition in Proposition 11.1.1
and calculate the dimension of Z(FG).

Exercise 11.4.9. Let RF (G) denote the free abelian group generated by the isomorphism
classes of irreducible representations of G over F. The elements of RF (G) are thus for-
mal�-linear combinations

∑
[V] aV [V] of classes (denoted by [·]). De�ne a binary oper-

ation on RF (G) by
[V] · [W] :� [V ⊗W]

on generators, and extend it to RF (G) by linearity. Show that (RF (G), +, ·) is an associa-
tive ring, called the representation ring of G. Relate it to the characters by

∑
V aV [V] 7→∑

V aVχV .

The elements in RF (G) are called virtual characters.

Exercise 11.4.10. Determine the splitting �elds for the cyclic groups �/n�.

Example 11.4.11. Here the base �eld is F :� �. Consider the groupQ :� {±1,±i ,± j,±k}
of quaternion units. It is the group of order 8 subject to the relations i2 � j2 � k2 � −1,
i j � − ji � k, and that ±1 is central in Q. The commutator subgroup of Q is {±1}
and Q/{±1} ≃ (�/2�)2. Thus we get four irreducible 1-dimensional representations
Q ։ (�/2�)2 → {±1}.
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Let � � � ⊕ �i ⊕ � j ⊕ �k be Hamilton’s quaternion algebra over �, on which
Q acts by left multiplication. Since Q spans � and � is a division algebra, � is a 4-
dimensional irreducible representation of Q. By the second equality in Exercise 11.4.8,
these �ve representations exhaust the irreducibles of Q over �, each occurring with
multiplicity one in �Q.

The last representation � is not absolutely irreducible. Choose any quadratic �eld
extension E/� such that E ⊗

�
� ≃ M2(E), we see that�E ≃ E2 ⊕ E2 as EQ-modules. By

the way, there are plenty of minimal splitting �elds of Q: any quadratic extension E/�
rami�ed at∞ and 2 (in the parlance of algebraic number theory) will do.
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LECTURE 12

INDUCTION OF REPRESENTATIONS

We set out to address the important operation of induction of representations.

12.1 Change of rings
Let A, B, k be rings and consider bimodules

ANB , BMk , ALk.

The reader can safely disregard the ring k here: one usually takes k � F when talking
about F-algebras, or simply puts k � � in order to make it irrelevant.

Lemma 12.1.1. There is a canonical isomorphism

Hom(A,k)−Mod(AN ⊗
B

Mk , ALk) ≃ Hom(B,k)−Mod(BMk ,Hom(AN, AL))

between right k-modules, which is functorial in (N,M, L), i.e. it de�nes an isomorphism be-
tween functors from

((A, B) −Mod)op × ((B, k) −Mod)op × ((A, k) −Mod)

to Mod − k. Here Hom(AN, AL) operates on the right of N , its (B, k)-bimodule structure is
de�ned by the familiar convention

b f t : n 7→ ((nb) f )t , b ∈ B, f ∈ Hom(AN, AL), t ∈ k,
and both Hom-sets admit obvious right k-module structures

Proof. By the categorical characterization of − ⊗
B
−, the left-hand side is canonically

isomorphic to the set Bil(N,M; L) of B-balanced maps

T : N ×M → L.

An element ϕ ∈ Hom(AN ⊗
B

Mk , ALk) corresponds to the balanced map Tϕ : (n ,m) 7→
ϕ(n ⊗ m); recall that T being balanced means

135
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⋆ T (nb ,m) � T (n , bm) for all n ∈ N , m ∈ M;
⋆ T is additive in N and M;
⋆ T (an ,mt) � aT (n ,m)t for all a ∈ A, t ∈ k.
On the other hand, we have a canonical isomorphism

Bil(N,M; L) ≃ Hom(BMk ,Hom(AN, AL))

de�ned as follows: to T ∈ Bil(N,M; L) is associated the map

m 7→ [n 7→ T (n ,m)], m ∈ M, n ∈ N.

It is immediate that the linearity conditions with respect to A, B and k translate pre-
cisely into the de�nitions of Bil(M,N ; L). The assertion follows at once. �

De�nition 12.1.2. Given a ring homomorphism A→ B, we deduce two functors P and
I from the category of (A, k)-bimodules to that of (B, k)-bimodules.

⋆ Take N :� BBA, and de�ne P � PA→B :� N ⊗
A
− � B ⊗

A
−.

⋆ Take N :� ABB, and de�ne I � IA→B :� Hom(AN,−) � Hom(AB,−); we de�ne
the (B, k)-bimodule structure on this Hom-set as above.

For every (B, k)-bimodule L, we may regard L as an (A, k)-bimodule by letting A
acts on L via A→ B. This can also be understood by the identi�cation

Hom(BB, BL)
∼→ L

given by evaluation at 1 ∈ B; the left-hand side admits an (A, k)-bimodule structure
from BBA. This is usually called a forgetful functor, since the A-module structure is
coarser than the B-module structure.

Exercise 12.1.3. Check the details.

Proposition 12.1.4. There are canonical isomorphisms of right k-modules

Hom(L, I(M)) ≃ Hom(AL,M),
Hom(P(M), L) ≃ Hom(M, AL),

which are functorial in AMk and BLk.

Proof. For the �rst isomorphism, apply Lemma 12.1.1 with N � ABB to deduce functo-
rial isomorphisms

Hom(AL,M) ≃ Hom(AB ⊗
B

L, AM) ≃ Hom(BL,Hom(AB,M)).

For the second one, the same Lemma with N � BBA yields

Hom(BB ⊗
A

M, L) ≃ Hom(AM,Hom(BB, L)) ≃ Hom(M, AL).

�
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These isomorphisms characterize I (resp. P) as the right (resp. left) adjoint of the
forgetful functor L 7→ AL: see [12, §1.8] for a review on adjoint functors. These three
functors are, in some sense, the master functors in the our study.

Proposition 12.1.5. Given rings A, B, C and homomorphisms A → B → C, we denote by
IA→B, PB→C, etc., to denote the corresponding functors. There are canonical isomorphisms

IB→C ◦ IA→B ≃ IA→C ,

PB→C ◦ PA→B ≃ PA→C .

Proof. The �rst one comes from Lemma 12.1.1, namely

Hom(BC,Hom(AB,−)) ≃ Hom(A(B ⊗
B

C),−) ≃ Hom(AC,−)

as functors A−Mod→Mod−k. The second one is even easier: use the usual constraints
for ⊗-functor to get C ⊗

B
(B ⊗ A−) ≃ C ⊗

A
−. �

Remark 12.1.6. A more conceptual approach, albeit less explicit, is to note the obvious
identity A(B (−)) � A(−) for forgetful functors, and then apply the Proposition 12.1.4
which characterizes P and I.

12.2 Induced representations
In this section, we �x a �eld F, a group G and a subgroup H ֒→ G. Therefore we obtain
the inclusion FH → FG of group algebras over F. In what follows, representations are
always taken over F.

Recall that the forgetful functor from FG-Mod to FH-Mod corresponds to the restric-
tion of representations from G to H, denoted by ResG

H : RepF (G) → RepF (H). It is natu-
ral to study the representations of G by looking at their decomposition upon restriction
to H. More precisely, given a representation W of H, how to construct a representation
of G that spins o� a W after applying ResG

H , in the most economical ways?

De�nition 12.2.1 (Induced representations). De�ne functors RepF (H) → RepF (G) by
setting, for all representation (W, σ) of H:

IndG
H (W ) :�

{
f : G →W, ∀h ∈ H, f (h g) � σ(h)( f (g))

}
,

indG
H (W ) :�

{
f ∈ IndG

H (W ) : Supp( f ) is �nite mod H
}
.

Here Supp( f ) :� {x : f (x) , 0} is the support of f , and G acts on these function
spaces via right translation f (·) 7→ f (·g). Given ϕ ∈ HomH (W1,W2), the corresponding
morphisms IndG

H (W1) → IndG
H (W2) is given by applying ϕ pointwise to the function

spaces. Note that indG
H (−) ֒→ IndG

H (−).

Remark 12.2.2. The notation W 7→ WG for indG
H (−) is prevalent in the literature; some

authors write c-IndG
H instead. The restriction functor ResG

H (−) is sometimes denoted as
V 7→ VH .
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We are going to relate these constructions to the abstract change-of-ring functors in
De�nition 12.1.2. Observe that every left FG-module can be turned into an (FG, F)-
bimodule; the ring k in the previous section is taken to be F.

Lemma 12.2.3. Upon identifying the categories of left FH (resp. FG)-modules and the repre-
sentations of H (resp. of G), there are isomorphisms of functors

IndG
H
∼→ I � IFH→FG ,

indG
H
∼→ P � PFH→FG .

The construction of IndG
H
∼→ I goes as follows. For every f : G →W in IndG

H (W ) we associate
the homomorphism ϕ ∈ Hom(FHFG, FHW ) by g 7→ f (g), ∀g ∈ G. For indG

H
∼→ P, given

f : G → W in indG
H (W ) we associate

∑
ḡ∈G/H g−1 ⊗ f (g) ∈ FG ⊗

FH
W , where g ∈ G is any

element in the coset ḡ ∈ G/H.

Proof. The inverses are given as follows. For ϕ ∈ Hom(FHFG, FHW ) we obtain f : G →
W by restricting ϕ to G ⊂ FG. On the other hand, note that

FG ⊗
FH

W �

⊕

ḡ∈G/H

ḡ(FH) ⊗
FH

W.

Given ḡ ∈ G/H, the choice of a representative g in the coset ḡ furnishes an isomorphism
ḡ(FH) ⊗

FH
W � g ⊗W

∼→ W . Thus an element in FG ⊗
FH

W induces a function G → W ,
which gives the inverse. All these morphisms are evidently functorial in W and respect
FG-module structures. �

Proposition 12.2.4 (Frobenius reciprocity). There are functorial isomorphisms

HomG (indG
H (−),−) ≃ HomH (−,ResG

H (−)),

HomG (−, IndG
H (−)) ≃ HomH (ResG

H (−),−),

i.e. indG
H is a left adjoint of ResG

H and IndG
H is a right adjoint thereof.

Proof. Apply the Lemma 12.2.3 and Proposition 12.1.4. �

Exercise 12.2.5. Describe these isomorphisms more explicitly. For example, the isomor-
phism

HomG (V, IndG
H (W ))

∼→ HomH (ResG
H (V),W )

is given by f 7→ [v 7→ f (v)(1)]; its inverse is ψ 7→ [v 7→ ψ(gv)].

Corollary 12.2.6. We have indG
H (−) � IndG

H (−) whenever (G : H) is �nite. This is the case
when G is a �nite group.

Proof. Immediate from the de�nitions. �

Corollary 12.2.7 (Transitivity of inductions). Let K ⊂ H ⊂ G be groups. We have IndG
HIndH

K ≃
IndG

K and indG
HindH

K ≃ indG
K .
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Proof. Apply the Lemma 12.2.3 and Proposition 12.1.5. Alternatively, we may de�ne

IndG
HIndH

K (W ) IndG
K (W )

[
ϕ : G → IndH

K (W )
] [

G ∋ g 7→ ϕ(g)(1) ∈ W
]

[
g 7→ [H ∋ h 7→ ψ(h g)]

] [
ψ : G →W

]
.

The details are left to the reader. The case of indG
K can be treated in a similar manner. �

12.3 Mackey’s criterion
The �eld F is kept �xed. In order to construct representations of a group G from smaller
groups by the recipe above, it is important to know to decomposition of induced rep-
resentations. In particular, one would like to know when is an induced representation
irreducible.

We begin with an important restriction-induction formula due to G. Mackey. Some
preliminaries are in order.

De�nition 12.3.1. Let (W, σ) be a representation of a group H and w : H′
∼→ H be an

isomorphism. We obtain thus a representation (Ww , σw) of H′ by pulling back via w,
namely Ww � W as vector spaces and σw (h′) :� σ(w(h′)) for all h′ ∈ H′. In what fol-
lows, w will be obtained by conjugation x 7→ wxw−1 using an element w in an ambient
group G containing both H and H′; actually this forces H′ � Hw :� w−1Hw. We shall
retain the notation (Ww , σw) in that case.

Lemma 12.3.2. Let G be a group and K,H be subgroups with �nite index. Let (W, σ) be an
irreducible representation of H over F. For any w ∈ G, let (Ww , σw) be the pull-back of (W, σ)
to Hw :� w−1Hw as above. There is an isomorphism of representations of H

ResG
K indG

H (W )
∼→

⊕

w̄∈H\G/K
indK

Hw∩KResHw

Hw∩K (Ww)

where w ∈ G is any representative of double coset w̄. The morphism is functorial in W .

The summand corresponding to w̄ is easily seen to be independent (up to isomor-
phism) of the choice of w.

Proof. Firstly, recall that indG
H (W ) is realized as a space of functions G →W with com-

pact support modulo H, on which G acts by right translation. For each double coset
HwK ⊂ G, de�ne

Fw :� { f ∈ indG
H (W ) : Supp( f ) ∈ HwK}.

Each of them is invariant under the K-action restricted from that of G. Hence

ResG
K indG

H (W ) �
⊕

w̄∈H\G/K
Fw as representations of K.
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It remains to recognize the summandsFw . Fix w, we have homomorphisms between
representations of K:

Fw �
{

f : HwK →W : ∀h ∈ H, f (h·) � σ(h)( f (·))
}

≃
��

∋ f
❴

��{
f ′ : wK →W : ∀h ∈ H ∩ wKw−1, f ′(h·) � σ(h)( f ′(·))

}
≃
��

∋ f ′ :� f |wK❴

��{
f ′′ : K →W : ∀k ∈ Hw ∩ K, f ′′(k·) � σw (k)( f ′′(·))

} ∋ f ′′(·) :� f ′(w·).
Here the functions are implicitly assumed to have �nite support modulo left multi-
plication by H, H ∩ wKw−1 and Hw ∩ K, respectively. The �rst arrow is an isomor-
phism, the inverse being f ′ 7→ [ f (hx) :� σ(h) f ′(x)] for all x ∈ wK, h ∈ H; one read-
ily veri�es that f ′ 7→ f well-de�ned. The second arrow is a “transport of structure”
isomorphism in Bourbaki’s jargon; it is again a routine check. The bottom row is ex-
actly indK

Hw∩KResHw

Hw∩K (Ww) and the required functoriality is clear. This completes the
proof. �

Exercise 12.3.3. Let N be a normal subgroup of G of �nite index, and W be a represen-
tation of N . Show that ResG

N indG
N (W ) is

ResG
N indG

N (W ) ≃
⊕

ḡ∈G/N

W g

where g is a representative in G of ḡ.

Theorem 12.3.4. Let G be a �nite group, H a subgroup of G, and assume that char(F) ∤ |G |
and F is the splitting �eld for G and H. Let W be an irreducible representation of H, then
indG

H (W ) is irreducible if and only if Ww and W “do not interact” in the sense that

HomHw∩H
(
ResH

Hw∩H (Ww),ResH
Hw∩H (W )

)
� {0}

for every w ∈ G, w < H.

Proof. By Maschke’s theorem and the splitting assumption, indG
H (W ) is irreducible if

and only if EndG (indG
H (W )) � F. Apply the previous Lemma together with Frobenius

reciprocity (Proposition 12.2.4) to the endomorphism space:

EndG (indG
H (W )) ≃ HomH (ResG

HindG
H (W ),W )

�

⊕

w̄∈H\G/H
HomH (indH

Hw∩HResHw

Hw∩H (Ww),W )

�

⊕

w̄∈H\G/H
HomHw∩H (ResHw

Hw∩H (Ww),ResH
Hw∩H (W )),

where we have used the property that ind(· · · ) � Ind(· · · ) for �nite groups. For the
identity double coset w̄ � H we get the summand EndH (W ) � F, hence indG

H (W ) is
irreducible if and only if the other Hom-sets are all zero. �
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12.4 Induced characters
In this section, G will be assumed to be a �nite group, H ⊂ G is a subgroup and F is
an arbitrary �eld. The representations hereafter are assumed to be �nite-dimensional
over F. Recall that for a representation V of G (resp. W of H), we have de�ned the
character χV (resp. χW ) as a class function on G (resp. H).

Note that the group G acts on the coset space G/H by left multiplication. The ele-
ments in G/H will be denoted as ḡ, etc., and their representatives in G will be denoted
as g, etc.

Proposition 12.4.1. Let W be a representation of H. For every x ∈ G, we have

χindG
H (W ) (x) �

∑

ḡ∈G/H
x ḡ� ḡ

χW (g−1x g)

where g ∈ G is any representative of the coset ḡ.

In particular, χindG
H (W ) (x) , 0 only if x is conjugate to some element of H.

Proof. Write the underlying F-vector space of indG
H (W ) as

FG ⊗
FH

W �

⊕

ḡ∈G/H

ḡFH ⊗
FH

W.

The element x permutes the elements of G/H and acts on FG ⊗
FH

W through the �rst
tensor slot, hence the direct summands above are permuted accordingly. Only those
ḡ ∈ G/H with x ḡ � ḡ contribute to Tr

(
x |FG ⊗

FH
W

)
.

Choose any representative g ∈ G of ḡ, so that x ḡ � ḡ if and only if x gH � gH, i.e.
g−1x g ∈ H (Note: this justi�es the formula in the Proposition). Moreover, x · (g ⊗ w) �
g g−1x g ⊗ w � g ⊗ (g−1x g)w whenever g−1x g ∈ H, thus the action of x on g ⊗W is the
same that of g−1x g on W , after identifying g ⊗W and W . Summing over all the x-�xed
elements ḡ ∈ G/H yields the character formula. �

Corollary 12.4.2. We have dimF (indG
H (W )) � (G : H) dimF W .

Proof. This can be deduced directly from the de�nitions. Here we derive it from 12.4.1
by putting x � 1. �

Hereafter we assume char(F) ∤ |G |. Let ξ, η : G → F be class functions. We de�ne

(ξ |η)G :� |G |−1
∑

g∈G

ξ(g)η(g−1).

From the orthogonality relations for characters we deduce

dimF HomG (V1,V2) � (χV1 |χV2 )G

for any representations V1, V2 of G.
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The formula in Proposition 12.4.1 can be used to de�ne the induction indG
H of a class

function from H to G. Similarly, we may de�ne the restriction of class functions from G to
H, which is simply ResG

H : f 7→ f |H . It re�ects the restriction of representations on the
level of characters.

Below is the classical form of Frobenius reciprocity expressed in terms of charac-
ters. Remarkably, this highly powerful tool was established (with F � �) at the very
beginning of representation theory (1898).

Figure 12.1: René Magritte. La clairvoyance. Brussels, 1936.

Corollary 12.4.3. Let V (resp. W) be a representation of G (resp. H) over F, we have

(χV |indG
H (χW ))G � (ResG

H (χV ) |χW )H .

Proof. From the discussion above, this follows from Proposition 12.2.4 by taking dimF.
�

12.5 An application: supersolvable groups
In this section, groups are always �nite and the representations are assumed to be �nite-
dimensional over F. Furthermore, we assume that char(F) ∤ |G | and F is a splitting
�eld, for every group G in sight.

De�nition 12.5.1. A �nite group G is called supersolvable if there exists an ascending
chain {1} � G0 ( G1 ( · · · ( Gn � G of normal subgroups Gi ⊳ G, such that Gi/Gi−1 is
cyclic for all 1 ≤ i ≤ n.

Abelian groups are supersolvable. Quotients and subgroups of a supersolvable
group are still supersolvable.

Lemma 12.5.2. Let G be a non-abelian supersolvable group. There exists a normal, abelian
subgroup which is not contained in the center Z(G) of G.
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Proof. The group Ḡ :� G/Z(G) is again supersolvable. Take the �rst subgroup Ḡ1
(cyclic!) in an ascending chain in Ḡ that witnesses its supersolvability. The inverse
image A of Ḡ1 in G is normal, properly containing Z(G), and abelian. Indeed, A is
generated by Z(G) together with one element whose image generates Ḡ1. �

Lemma 12.5.3 (Cli�ord). Let G be a �nite group and N ⊳G be a normal subgroup. Let (V, ρ)
be an irreducible representation of G. We have

ResG
N (V) ≃ *,

n⊕

i�1
(Wi)⊕m+-

where W1, . . . ,Wn are mutually non-isomorphic irreducible representations of N , and G per-
mutes the subspaces W⊕m

i . Furthermore, V ≃ indG
H (W′) where W′ :� W⊕m

1 and H :� {g ∈
G : ρ(g)W1 ≃W1 in RepF (N)}, [G : H] � n.

Proof. Pick any irreducible subrepresentation W of ResG
N (V). By the irreducibility of

V , we see ResG
N (V) �

∑
ḡ∈G/N ρ(g)W . It is crucial to observe ρ(g)U ≃ U g−1 in RepF (N)

(notation in §12.3) for any subrepresentation U of ResG
N (V), since N ⊳ G. Set H :� {g ∈

G : ρ(g)W ≃W } ⊲ N . We obtain

W′ :�
∑

h̄∈H/N

ρ(h)W ≃W⊕m , for some m ,

ResG
N (V) �

∑

ḡ∈G/H

ρ(g)W′ ≃
∑

ḡ∈G/H

(W⊕m)g−1 ≃
∑

ḡ∈G/H

(ρ(g)W )⊕m .

The last sum is direct and the choices of representatives g , h are irrelevant. It remains
to use

FG ⊗FH W′ ∼→
⊕

ḡ∈G/H

ρ(g)(W′) � V in FG −Mod

de�ned by g ⊗ v 7→ ρ(g)v. �

Exercise 12.5.4. Let ρ : G ։ Ḡ be a surjective homomorphism, H̄ a subgroup of Ḡ
and σ a representation of H̄. Set H :� ρ−1(H̄). One may regard σ (resp. IndḠ

H̄ (σ)) as
a representation of H (resp. of G) by pulling back via ρ. Show that there is a natural
isomorphism

IndG
H (σ) ≃ IndḠ

H̄ (σ)

of representations of G.

Exercise 12.5.5. Show that the irreducible representations of abelian groups over F (as-
sumed to be a splitting �eld) are all 1-dimensional. Hint. Here the group algebra over
F must split into a direct product of F’s.

Theorem 12.5.6. Let G be a supersolvable group. Every irreducible representation of G over F
is induced from an 1-dimensional representation of some subgroup.
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Proof. Let (V, ρ) be an irreducible representation of G over F. We may assume ker(ρ) �
{1} upon passing to G/ker(ρ) and applying Exercise 12.5.4. If G is abelian, Exercise
12.5.5 will conclude our proof. Otherwise we may take a non-central abelian normal
subgroup A⊳G by virtue of Lemma 12.5.2. Consider ResG

A (V). Were it isotypic (i.e. n �

1 in the Lemma), A would act on V by scalar multiplication as A is abelian, so ρ(A) ⊂
Z(ρ(G)) which is contradictory since ker(ρ) � {1}. Therefore V is of the form indG

H (W )
where H ( G. Certainly W itself must be irreducible, and H is also supersolvable. We
conclude by induction on |G | and by Corollary 12.2.7. �

The representations induced from 1-dimensional ones are called monomial represen-
tations; a group whose irreducibles are all monomial is called an M-group. We conclude
that supersolvable groups are M-groups.

Exercise 12.5.7. Describe the irreducible representations of the symmetric group S3
over splitting �elds.



LECTURE 13

REPRESENTATIONS OF SYMMETRIC
GROUPS

We deal with the ordinary representation theory of the symmetric groups in this lec-
ture. The approach adopted here is largely combinatorial; we shall follow [13, 22] rather
closely. Another prevalent approach is based on the use of idempotents, see eg. [12,
§5.4].

13.1 Review: the symmetric groups
De�nition 13.1.1. Let X be a �nite set. The symmetric groupSX is the group of bijections
X → X under composition: f · g � f ◦ g. If |X | � n, we may identify X with the set
{1, . . . , n} and writeSn instead. Fix n ∈ �≥1. Elements inSn are called permutations of
the letters 1, . . . , n.

It is often convenient to represent an element σ ∈ Sn as a product of disjoint cycles
by decomposing {1, . . . , n} into orbits under σ. A cycle is written in the form

(λ1 · · · λm) ∈ Sn

where λ1, . . . λm ∈ {1, . . . , n} (unique up to cyclic permutations); it maps

λ1 7→ λ2 7→ · · · 7→ λm+1 7→ λ1

whereas the other letters are left intact. The integer m above is called the length of the
cycle. Two cycles are called disjoint if the λi’s thereof do not overlap. Let us record
some basic facts.

1. Disjoint cycles commute inSn .

2. Every element σ ∈ Sn can be written as a product σ � τ1 · · · τr where the τi are
disjoint cycles (we may remove those of length 1); they are unique up to order.
The collection of the lengths of τ1, . . . τr is called the cycle type of σ.
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3. Let σ ∈ Sn and τ be a cycle; without loss of generality we may assume τ �

(12 · · · k), k ≤ n, then the conjugate στσ−1 is again a cycle, given by

σ(12 · · · k)σ−1
� (σ(1)σ(2) · · · σ(k)).

4. Consequently, the conjugacy classes in Sn are in bijection with the cycle types,
which are in turn in bijection with the partitions of n. Recall that a partition λ of n
is a datum λ � (λ1 ≥ λ2 ≥ · · · ≥ λr ), λi ∈ �≥1 for each i, such that λ1+· · ·+λr � n.

Notation 13.1.2. As is customary, we write λ ⊢ n to mean that λ is a partition of n.
Cycles of length 2 are called transpositions, i.e. of the form (ab) with 1 ≤ a , b ≤ n.

Transpositions of the form (k k + 1) generateSn .
Moreover, we have the sign homomorphism sgn :Sn → {±1}, characterized by sgn(τ) �

−1 for every transposition τ.

13.2 Young diagrams, tableaux and tabloids
We have seen that the conjugacy classes ofSn are in bijection with the partitions λ �

(λ1 ≥ · · · ≥ λr ) ⊢ n. The latter can be conveniently visualized via the Young diagram1:
one puts λ1 boxes in the �rst row, λ2 boxes in the second row, etc. For example, the
partition λ � (4 ≥ 2 ≥ 2 ≥ 1) ⊢ 9 is represented as

λ �(13.1)

Two partitions λ, µ are called conjugate if their Young diagrams are related by inter-
changing rows and columns; in this case we write µ � λ̄. For example, the conjugate
of the λ � (4 ≥ 2 ≥ 2 ≥ 1) is λ̄ :� (4 ≥ 3 ≥ 1 ≥ 1), visualized as

λ̄ �

A Young tableau of shape λ is the Young diagram corresponding to λ, say with n
boxes, in which the integers 1, . . . , n are �lled without repetition. Taking up the exam-
ple (13.1), we may �ll it in the following manner

t �

9 3 4 2
5 7
1 6
8

(13.2)

1Named after the British mathematician Alfred Young; also known as Ferrers diagram.



147

The group Sn acts on the set of Young tableaux with n boxes by permuting the
numbers therein. For a given tableau t, de�ne the row stabilizer Rt as the subgroup
of elements in Sn which �x each row set-wise. In the example (13.2) we have Rt �

S{2,3,4,9} ×S{5,7} ×S{1,6} viewed as a subgroup ofS9.
Two tableaux with n boxes are called row equivalent if t1 � σt2 for σ ∈ Rt2 . This is

easily seen to be an equivalence relation which does not alter the shapes. A row equiva-
lence class of tableaux of shape λ is called a tabloid of shape λ. The tabloid containing a
tableau t is denoted by {t}. Tabloids are commonly visualized by removing the vertical
edges in the tableau. For instance, for t as in (13.2) we shall write

{t} �

9 3 4 2
5 7
1 6
8

Again,Sn acts on the set of tabloids of a given shape via σ{t} � {σt}. Likewise we
may de�ne column equivalence and the column stabilizer Ct of a tableau t.
De�nition 13.2.1. Given λ � (λ1 ≥ · · · ) and µ � (µ1 ≥ · · · ) such that λ, µ ⊢ n, we say
λ dominates µ, written as λ ⊲ µ, if

∑

i≤k

λi ≥
∑

i≤k

µi , ∀k ∈ �≥1.

Here we may impose λi � 0 for i su�ciently large; the same for µi .
The dominance relation of partitions or Young diagrams de�nes a partial order on

the set of partitions of n, i.e.
⋆ (λ ⊲ µ) ∧ (µ ⊲ ν) �⇒ λ ⊲ ν,
⋆ (λ ⊲ µ) ∧ (µ ⊲ λ) ⇐⇒ λ � µ.

It is “partial” since not every pair (λ, µ) is comparable with respect to ⊲.
Lemma 13.2.2. Suppose λ, µ ⊢ n. If there exist tableaux t and s of shape λ and µ, respectively,
such that for each i ≥ 1 the elements of the i-th row of s are all in di�erent columns of t, then
we must have λ ⊲ µ.
Proof. The �rst row of s has µ1 elements which can be placed in di�erent columns of t.
Upon rearranging the entries of t in each column (i.e. upon applying to t a permutation
from Ct), we may assume that these numbers sit in the �rst row. Hence λ1 ≥ µ1.

The entries of the second row of s can be placed in di�erent columns of t. Again,
we may rearrange the entries in each column of t without touching the entries placed
at the previous step, so that these numbers sit in the �rst two rows of t. Therefore
λ1 + λ2 ≥ µ1 + µ2. Proceeding inductively, the numbers from the �rst k rows of s can
be placed in the �rst k rows of t, and the inequality

∑
i≤k λi ≥ ∑

i≤k µi follows, for each
k. �

De�nition 13.2.3 (The lexicographic order). Let λ � (λ1 ≥ · · · ) and µ � (µ1 ≥ · · · ) be
partitions of n. We write λ > µ if there exists k ∈ �≥1 such that

λi � λi , ∀i < k
λk > µk .
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This is easily seen to be a total order: any two partitions of n are comparable.

Lemma 13.2.4. If λ ⊲ µ, then λ ≥ µ; that is, ≥ re�nes ⊲.

Proof. There is nothing to prove when λ � µ. Suppose λ , µ, choose the minimal
k ∈ �≥1 such that λk , µk . This is the required k in the de�nition of λ > µ. �

13.3 Specht modules
Let F be any �eld. Let λ � (λ1 ≥ · · · ≥ λr ) ⊢ n.

De�nition 13.3.1. The permutation module Mλ is the (free) F-vector space generated by
the tabloids of shape λ. TheSn-action σ{t} � {σt} on tabloids a�ords a left FSn-module
structure on Mλ.

Thus an element of Mλ can be expressed as an F-linear combination
∑

shape{t}�λ at {t}
with unique coe�cients.

Exercise 13.3.2. Show that dimF Mλ � (n!)/(λ1! · · · λr !) for any λ ⊢ n.

De�nition 13.3.3. Let t be a Young tableau of shape λ ⊢ n.
1. De�ne the corresponding signed column sum as

κt :�
∑

σ∈Ct

sgn(σ)σ ∈ FSn .

2. The polytabloid et associated to the tableau t is de�ned as

et :� κt {t} ∈ Mλ .

In this case we say et is a polytabloid of shape λ.
3. The Specht module Sλ associated to λ is the left FSn-submodule of Mλ spanned

by polytabloids of shape λ.

Proposition 13.3.4. Let t be a tableau with n boxes and σ ∈ Sn . We have
1. Rσt � σRtσ−1 and Cσt � σCtσ−1;
2. κσt � σκtσ−1;
3. eσt � σet .

Proof. The �rst statement concerning row and column stabilizers result from an easy
“transport of structure” by σ. As for the second statement, it su�ces to note sgn(στσ−1) �
sgn(τ) for all τ ∈ Sn . Therefore

eσt � κσt {σt} � σκtσ
−1σ{t} � σet

and the third statement follows. �

Recall that a left FSn-module M is called cyclic if there exists e ∈ M such that M �

FSn e. Since the tableaux of shape λ form a single orbit underSn , we get the following
corollary of the last assertion.
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Corollary 13.3.5. The Specht module Sλ is cyclic. In fact, for any polytabloid et of shape λ we
have Sλ �Sn et .

Below is an example borrowed from [22, p.61]. Consider the tableau

t �
4 1 2
3 5

The column stabilizer Ct is generated by the transpositions (34) and (15). We have
κt � (1 − (34))(1 − (15)) and

et �
4 1 2
3 5

− 3 1 2
4 5

− 4 5 2
3 1

+
3 5 2
4 1

.

Proposition 13.3.6. For each partition λ we have Sλ , {0}.
Proof. Construct a tableau t of shape λ by inserting numbers into the rows consecu-
tively, eg.

t �
1 2 3 4
5 6
7

.

It is then clear that {t} appears with coe�cient one in the expression
∑
σ∈Ct sgn(σ)σ{t}.

�

Lemma 13.3.7. Let H be a subgroup ofSn . Put H− :�
∑

h∈H sgn(h)h ∈ FSn .
1. For every σ ∈ H we have σH− � H−σ � sgn(σ)H−.
2. For every transposition τ ∈ H, we have H− ∈ FSn · (1 − τ).
3. If t is a tableau with n boxes, b , c ∈ {1, . . . , n} such that b , c lie in the same row of t

and (bc) ∈ H, then H−{t} � 0.

Proof. The �rst assertion is clear from the multiplicativity of sgn. To prove the second
one, we use the coset decomposition H �

⊔s
i�1 κi {1, τ} with respect to the subgroup

generated by τ, by choosing representatives κ1, . . . , κs . Then

H− � *,
s∑

i�1
sgn(κi)κi+- · (1 − τ).

To prove the �nal assertion, note that (bc){t} � {t}. Set τ :� (bc), we have (1−τ){t} �
0 and the assertion follows from the previous one. �

Exercise 13.3.8. Show that Sλ ≃ 1 (the trivial representation) when λ � (n), and Sλ ≃
sgn when λ � (1 · · · 1).

Lemma 13.3.9. Let λ, µ ⊢ n. Let t and s be tableaux of shape λ and µ, respectively.
1. If κt {s} , 0, then λ ⊲ µ.
2. If λ � µ and κt {s} , 0, then κt {s} � ±et .
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Proof. Suppose κt {s} , 0. For any two numbers b , c in the same row of s, they cannot
lie in the same column of t; otherwise the preceding Lemma with H :� Ct ∋ (bc) would
imply κt {s} � 0. Hence the Lemma 13.2.2 implies λ ⊲ µ.

Suppose in addition that λ � µ. We claim that there exists σ ∈ Ct such that {s} �
σ{t}. Indeed, we start by permuting the entries in the �rst column of t, so that an
entry x thereof lies in the i-th row of t if and only if it lies in the i-th row of s (but
probably in di�erent columns); this can always be done according to the discussions
above. Working column-by-column we eventually arrive at {s} � σ{t} where σ ∈ Ct ,
hence the claim. The previous Lemma with H � Ct yields

κt {s} � κtσ{t} � sgn(σ)κt {t} � sgn(σ)et

as asserted. �

Corollary 13.3.10. Let m ∈ Mλ and t be a tableau of shape λ. Then κt m ∈ F · et .

Proof. Write m �
∑r

i�1 ci {si }, where si are tableaux of shape λ. Now apply the previous
Lemma. �

Proposition 13.3.11. Let λ, µ ⊢ n. Let ϕ ∈ HomFSn (Mλ ,Mµ). If ϕ |Sλ , 0, then λ ⊲ µ. If
λ � µ, then ϕ |Sλ is multiplication by some scalar in F.

Proof. By assumption there exists et ∈ Sλ such that

0 , ϕ(et ) � ϕ(κt {t}) � κtϕ({t}).

By writing ϕ({t}) �
∑r

i�1 ci {si } where si are tableaux of shape µ. Lemma 13.3.9 then
implies λ ⊲ µ.

Assume λ � µ. We have just seen that ϕ(et ) �
∑r

i�1 ciκt {si }. Corollary 13.3.10 says
that ϕ(et ) � cet for some c ∈ F. By (i) theSn-equivariance of ϕ and (ii) the cyclicity of
Sλ, it follows that ϕ(x) � cx for every x ∈ Sλ. �

Remark 13.3.12. The construction so far is combinatorial. It makes no use of the �eld
structure of F. In fact F can be any commutative ring, such as �.

13.4 Representations ofSn

Although this is not absolutely necessary, we begin by paraphrasing the earlier con-
structions in terms of induced representations. Here we de�ne the induction functor
indG

H as FG ⊗FH −.
For a partition λ � (λ1 ≥ · · · ≥ λr ) ⊢ n, the corresponding Young subgroup ofSn is

de�ned as

S[λ] :�S{1,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · ×S{n−λr+1,...,n}

≃
r∏

i�1
Sλi .
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We shall �x λ in what follows. Let us denote by t the tableau of shape λ given by

t :�

1 2 . . . λ1

λ1+1
...

n−λr+1 . . . n

Note that Rt �S[λ] and Ct ≃S[λ̄] where λ̄ is the conjugate Young diagram of λ with
rows and columns swapped.

Proposition 13.4.1. Fix a nonzero vector v0 in the underlying F-vector space of the trivial
representation 1 ofS[λ]. The homomorphism between representations ofSn over F

indSn
Rt

(1) −→ Mλ

σ ⊗ v0 7−→ σ{t}, σ ∈ Sn

is an isomorphism.

Proof. Routine. �

Proposition 13.4.2. Consider the 1-dimensional representation sgn of Ct, which is the restric-
tion of sgn : Sn → {±1}, and �x a nonzero vector u0 in its underlying F-vector space. The
homomorphism

indSn
Ct

(sgn) −→ Mλ

σ ⊗ u0 7−→
∑

τ∈Cσt

sgn(τ){τσt} �: eσt.

between representations ofSn is well-de�ned. In particular, its image equals Sλ.

Proof. If this map is well-de�ned, it will be a homomorphism of representations since
egσt � geσt for any g , σ ∈ Sn , by Proposition 13.3.4. It is indeed well-de�ned by the
part 1 of Lemma 13.3.7 with H :� Ct, which yields eσht � σhκt{t} � sgn(h)eσt for all
h ∈ Ct. �

All in all, the Specht module Sλ is characterized as the image of a canonical inter-
twining operator indSn

Ct
(sgn) → indSn

Rt
(1).

Henceforth we assume char(F) ∤ |Sn | � n!. Equivalently, either char(F) � 0 or
p :� char(F) > n.

Theorem 13.4.3. For λ ranging over the partitions of n, the Specht modules Sλ form a complete
set of isomorphism classes of irreducible representations of Sn over F. Moreover, each Sλ is
absolutely irreducible.

Proof. We divide the proof into three steps.
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1. Sλ is absolutely irreducible for each λ. It su�ces to show EndSn (Sλ) � F. By
Maschke’s theorem we may take a subrepresentation T of Mλ such that Mλ � Sλ⊕
T. Using this, everyψ ∈ HomSn (Sλ , Sλ) can be extended toϕ ∈ HomSn (Mλ ,Mλ).
If ψ , 0, Proposition 13.3.11 implies ψ is a scalar multiplication from F.

2. Sλ ≃ Sµ only when λ � µ. Let ψ ∈ HomSn (Sλ , Sµ), ψ , 0. As before, ψ can be
extended to ϕ ∈ HomSn (Mλ ,Mµ). This time the Proposition 13.3.11 yields λ⊲µ.
By symmetry µ ⊲ λ as well, hence λ � µ.

3. Every irreducible representation is isomorphic to some Sλ. By general theory,
the number of irreducible representations of Sn (up to isomorphism) is less or
equal then the number of conjugacy classes. Since the partitions of n and the
conjugacy classes inSn are in bijection, we conclude by the previous steps.

�

Corollary 13.4.4. Any �eld F with char(F) ∤ n! is a splitting �eld of G.

Corollary 13.4.5. Let µ be a partition. We have the decomposition

Mµ
�

⊕

λ≥µ
(Sλ)⊕mλ,µ

in the ordering of De�nition 13.2.3, and mµ,µ � 1.

Proof. In Proposition 13.3.11 it is shown that HomSn (Sλ ,Mµ) , {0} only if λ⊲µ, which
implies λ ≥ µ by Lemma 13.2.4. Furthermore, when λ � µ the Hom-set equals F. �

In other words, the characters of Mµ and Sλ form two bases of the space of class
functions on Sn , as λ, µ varies. They are related by an upper-triangular matrix with
diagonal entries equal to 1. This transition matrix and its inverse are, however, not
so easy to compute. The multiplicities mλ,µ here actually equal the combinatorially
de�ned Kostka numbers.

13.5 Odds and ends
Due to the combinatorial nature of our constructions, much information about the
Specht modules can be e�ectively computed from the Young tableaux. We do not have
time to go further. Let us indicate some aspects.

1. Standard tableaux. Let λ ⊢ n. The polytabloids span Sλ. A nice basis is given
by the polytabloids et indexed by standard tableaux of shape λ. A tableau is called
standard if its rows and columns are increasing sequences. The dimension of Sλ,
or the number of standard tableaux of shape λ, also admits an elegant description,
the hook length formula (Frame-Robinson-Thrall, 1954):

dimF Sλ �
n!∏

x hook(x)
,
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where x ranges over the boxes in the Young diagram for λ and hook(x) is the
length (i.e. the number of boxes) of the “hook” with corner x, as depicted below

x
(n � 15).

2. Branching laws. There is a combinatorial description of ResSn
Sn−1

(Sλ) when char(F) ∤
n!. Roughly speaking, its decomposition is given by removing one box from λ to
obtain a new Young diagram, in all possible ways. An illustration:

ResS15
S14

*..,
+//-
≃ ⊕ ⊕ .

In particular, the restricted representation decomposes with multiplicity one. Thanks
to the Frobenius reciprocity, one has a similar recipe for decomposing indSn+1

Sn
(Sλ).

3. Modular representations. When p :� char(F) divides n!, the Specht modules Sλ

are no longer irreducible in general. A partition λ is called p-singular if λi+1 �

· · · � λi+p > 0 for some i ≥ 0; otherwise it is called p-regular. For p-regular λ,
there is a unique irreducible quotient Dλ of Sλ. It is known (James, 1976) that
{Dλ : λ is p-regular} exhausts all the irreducibles ofSn , and they are absolutely
irreducible.

4. It would be much more satisfactory to treat the theory of symmetric functions
and Schur-Weyl duality in parallel. But we do not have time to zhēténg anymore.
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LECTURE 14

BRAUER INDUCTION THEOREM

The aim of this lecture is to prove the celebrated Brauer induction theorem. Apart from
its intrinsic beauty and applications, the proof will make use of many of our previous
results; therefore we are in a position to refresh our knowledge.

14.1 Group-theoretic backgrounds
In what follows, G is a �nite group. The identity element of a group will be denoted
by 1. Let p be a prime number.

⋆ G is called a p-group if |G | � pm for some m.

⋆ A subgroup H of G is called a Sylow p-subgroup if H is a p-group and the index
(G : H) is not divisible by p.

The Sylow p-subgroups exist and are conjugate to each other. All these are standard
results in undergraduate algebra, see eg. [16, I.6] for a detailed discussion.

Next, note that every �nite cyclic group A has a canonical decomposition A � Ap′ ×
Ap where
⋆ Ap′ is a cyclic subgroup of order prime to p,
⋆ Ap is a p-subgroup.
For each x ∈ G, let 〈x〉 denote the cyclic subgroup of G generated by x. Write

〈x〉 � 〈x〉p′ × 〈x〉p as above, there is a unique decomposition

x � xp′xp � xp xp′

where xp′ ∈ 〈x〉p′ , xp ∈ 〈x〉p .

De�nition 14.1.1. Let p be a prime number. We call G a p-elementary group if it is of
the form G � C × P where C is a cyclic group of order prime to p, and P is a p-group.

We call G a p-quasi-elementary group if it is of the form G � C ⋊ P where C and P
are as above.
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In a p-quasi-elementary group G, the component C in the semi-direct product G �

C ⋊ P is characterized by

C � Gp′ :� {x ∈ G : x � xp′}.(14.1)

Indeed, the inclusion C ⊂ Gp′ is evident. Conversely, given x ∈ Gp′, its image in G/C ≃
P is of order prime to p, hence trivial since P is a p-group. Thus x ∈ C.

Lemma 14.1.2. If G is p-elementary (resp. p-quasi-elementary), then so are the subgroups of
G.

Proof. Firstly we notice the following property: a group G is p-quasi-elementary if and
only if Gp′ is a cyclic subgroup. The “only if” part follows from the preceding discus-
sion. Conversely, if Gp′ is a subgroup then it is normal and equals the direct product of
all Sylow ℓ-subgroups (ℓ , p). Choose a Sylow p-subgroup P of G; by considerations
of cardinality we have G � Gp′ ⋊ P.

Let H be a subgroup of G. We have Hp′ � H ∩ Gp′. If G is p-quasi-elementary then
Hp′ is a cyclic subgroup of H, thus H is p-quasi-elementary as well; in this case we write
H � Hp′ ⋊ PH . If G is p-elementary, then there is a unique Sylow p-subgroup P of G.
Therefore PH � H ∩ P commutes with Hp′ ⊂ Gp′, and one gets H � CH × PH , showing
that H is p-elementary. �

Remark 14.1.3. Note that p-elementary groups are supersolvable. This fact is trivial for
the cyclic part C, whilst the supersolvability (in fact, nilpotence) for the p-groups is a
standard fact – see [16, I.6.6].

14.2 Representation-theoretic backgrounds
We �x a �eld F and assume char(F) ∤ |G |, although this is not always necessary. The
representations below are all �nite-dimensional over F.

Proposition 14.2.1. Let H be a subgroup of a �nite group G. Let W (resp. V) be a representa-
tion of H (resp. G). There is a canonical isomorphism

indG
H

(
W ⊗ ResG

H (V)
) ∼→ indG

H (W ) ⊗ V.

Proof. We give a proof using adjunction of functors. Let U be a representation of G over
F. We have functorial isomorphisms

HomG
(
indG

H (W ⊗ ResG
H (V)),U

)
≃ HomH

(
W ⊗ ResG

H (V),ResG
H (U)

)
≃

HomH
(
W,Hom(ResG

H (V),ResG
H (U))

)
� HomH

(
W,ResG

HHom(V,U)
)
≃

HomG
(
indG

H (W ),Hom(V,U))
)
≃ HomG

(
indG

H (W ) ⊗ V,U
)
,

where Hom(· · · ) signi�es that the Hom-space of F-vector spaces in question is re-
garded as a representation. This concludes the proof. �

Exercise 14.2.2. Besides (indG
H ,ResG

H ), which pair of adjoint functors have we used in
the proof? Try to justify it.
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Exercise 14.2.3. Prove Proposition 14.2.1 by using the explicit map

(FG ⊗
FH

W ) ⊗
F

V −→ FG ⊗
FH

(W ⊗
F

V)

(g ⊗ w) ⊗ v 7−→ g ⊗ (w ⊗ g−1v).

Show that it is an isomorphism of left FG-modules.

De�nition 14.2.4. De�ne the representation ring RF (G) of G as the �-module gener-
ated by the symbols [V], where [V] ranges over the isomorphism classes of represen-
tations of G, subject to the relation

[V ⊕W] � [V] + [W].

The ring structure on RF (G) is prescribed by [V] · [W] � [V ⊗W]. It is a commutative
ring with unit [1], the class of the trivial representation.

Note that indG
H , ResG

H induce maps RF (H) → RF (G), RF (G) → RF (H), respectively.
They are homomorphisms of additive groups.

De�nition 14.2.5. LetH be a family of subgroups of G. De�ne RH (G) as the following
additive subgroup of RF (G) ∑

H∈H
indG

H (RF (H)).

Sometimes one has to switch to the setup of characters χV . To facilitate the transi-
tion, note that there is a homomorphism from RF (G) to the ring of class functions on
G (with respect to pointwise addition and multiplication), given by [V] 7→ χV . It is
injective whenever char(F) � 0, in which case the image is precisely the �-linear com-
binations of irreducible characters. Later on, we will denote by XF (G) the image of this
homomorphism.

Lemma 14.2.6. For any family H , the additive subgroup RH (G) is actually an ideal of the
ring RF (G).

Proof. It su�ces to prove that [indG
H (W ) ⊗ V] ∈ RH (G) for every H ∈ H , [W] ∈ RF (H)

and [V] ∈ RF (G). By Proposition 14.2.1,

indG
H (W ) ⊗ V ≃ indG

H (W ⊗ ResG
H (V))

hence its class lies in RH (G). �

14.3 Brauer’s theorem
In this section we assume char(F) � 0 and F is a splitting �eld of all the subgroups of
G; see Corollary 14.4.2 for a substantial improvement of the latter assumption. We will
follow the slick proof due to Goldschmidt and Issacs [8]; see also [12, §5.12]. The reader
may consult [16, XVIII.10] for another elegant proof due to Brauer and Tate (1955).
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Theorem 14.3.1 (Brauer, 1947). Let H be the set of all p-elementary subgroups of G, for
various prime numbers p. Then RF (G) � RH (G).

Corollary 14.3.2. De�neH as above. Every element in RF (G) can be expressed as
∑

H∈H

∑

ξ:rep of H
dim ξ�1

cξ · indG
H (ξ)

for coe�cients cξ ∈ �.

Proof. Use the fact that (i) p-elementary groups are supersolvable, and (ii) supersolv-
able groups are M-groups. �

In what follows, we denote by 1 the trivial representation; the ambient group will be
clear according to the context. De�neH ′ to be the set of p-quasi-elementary subgroups
of G, for various prime numbers p.

Lemma 14.3.3. ForH ′ chosen as above, the additive subgroup

P(H ′) :�
∑

H∈H ′
� · [indG

H (1)] ⊂ RF (G)

is actually a subring (possibly without 1).

Proof. It su�ces to show that for every H, K ∈ H ′, we have

[indG
H (1)] · [indG

K (1)] ∈ P(H ′).
By Proposition 14.2.1 we have

indG
H (1) ⊗ indG

K (1) ≃ indG
H

(
1 ⊗ ResG

H (indG
K (1))

)

� indG
H

(
ResG

H (indG
K (1))

)

The term ResG
H (indG

K (1)) can be expressed as a direct sum of representations of the form
indH

L (1) by Mackey’s theorem, where L ranges over some subgroups of H. In particular
L ∈ H ′ by Lemma 14.1.2. This su�ces to conclude since indG

H ◦ indG
L ≃ indG

L . �

Lemma 14.3.4 (Banaschewski). Let X be a �nite set, X , ∅ and let 1X denote the constant
function X → {1}. Let A be a ring (possibly without 1) of functions X → � under pointwise
addition and multiplication. If 1X < A, then there exists x ∈ X and a prime number p such
that ∀a ∈ A, a(x) ∈ p�.

Proof. Note that for every x ∈ X, the set Ix � {a(x) : a ∈ A} is a subgroup of �, hence is
of the form nx� for some nx ∈ �≥1. Suppose on the contrary that for every x ∈ X we
have 1 ∈ Ix . Then we may choose a family (ax)x∈X of elements in A such that

∏

x∈X

(1X − ax) � 0

as functions X → �. Expanding this �nite product shows that 1X ∈ A. �
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Now we can establish an important intermediate step towards Brauer’s theorem.
Proposition 14.3.5 (Solomon). With the notations as before, we have [1] ∈ P(H ′).
Proof. For every subgroup H of G, write 1G

H : G → F for the character of indG
H (1). It is

clearly �-valued. In fact, the induced character formula asserts that

1G
H (x) � |{ ḡ � gH ∈ G/H : g−1x g ∈ H}|.

We may embed RF (G) into the ring of class functions on G via [V] 7→ χV . In view
of the preceding lemmas applied to A � P(H ′), it su�ces to show that for each x ∈ G
and prime number p, there exists H ∈ H ′ such that 1G

H (x) < p�.
Fix x ∈ G. We shall use the familiar decomposition 〈x〉 � C × 〈x〉p where C :� 〈x〉p′.

Put

N :� the normalizer of C in G,

H̄ :� a Sylow p-subgroup of N/C.

Write H̄ � H/C. We contend that H ∈ H ′. Indeed, let P be a Sylow p-subgroup of H,
then H � C ⋊ P by considerations of cardinality, thus H is p-quasi-elementary.

Claim: 1G
H (x) � 1N

H (x). From the induced character formula alluded above for G
and N , we only need to show g−1x g ∈ H ⇒ g ∈ N for every g ∈ G. Indeed, g−1x g ∈ H
implies g−1〈x〉p′g ⊂ Hp′, whilst 〈x〉p′ � C � Hp′.

Next, observe that 〈x〉 ⊂ N acts on N/H by left translation. The subgroup C acts
trivially since C ⊳ N and C ⊂ H. Thus we deduce an action of the p-group 〈x〉/C on
N/H. Counting |N/H | by collecting the 〈g〉/C-orbits, we obtain

[N : H] � |�xed points| +
∈p�︷                            ︸︸                            ︷

lengths of the other orbits
≡ |{ ḡ ∈ N/H : x ḡ � ḡ}| mod p

≡ 1N
H (x) mod p.

Since [N : H] � [N/C : H̄] is coprime to p by construction, it follows that 1G
H (x) �

1N
H (x) < p�, as required. �

Lemma 14.3.6 (Issacs). Suppose that G � N ⋊ P where P is a Sylow p-subgroup of G. Let
λ : N → F× be a homomorphism and set

Gλ :� {g ∈ G : λg (·) :� λ(g · g−1) � λ(·)},
ZN (P) :� {g ∈ N : ∀π ∈ P, gπ � πg}.

If ZN (P) ⊂ ker(λ) and P ⊂ Gλ, then λ is trivial.
Proof. Let ν ∈ N , we contend that λ(ν) � 1. Since Gλ ⊃ P, the conjugation action of P
on N leaves the �ber λ−1(λ(ν)) stabe; the �xed-point set is ZN (P) ∩ λ−1(λ(ν)). Since
ZN (P) ⊂ ker(λ), it remains to show the existence of P-�xed points.

As in the previous proof, we argue by counting the orbit-lengths in λ−1(λ(ν)). Since
P is a p-group,

|ker(λ) | � |λ−1(λ(ν)) | ≡ |P-�xed points| mod p.

As ker(λ) ⊂ N is of order prime to p, �xed points exist. �
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Proof of Theorem 14.3.1. By Lemma 14.2.6, RH (G) is an ideal of RF (G) and it su�ces to
show [1] ∈ RH (G). In view of Proposition 14.3.5 and the transitivity of the ind-functors,
we may reduce to the case where G is p-quasi-elementary for some prime number p.
Furthermore, by induction on |G |, we are reduced to show that

[1] ∈
∑

H(G

indG
H (RF (H))(14.2)

whenever G is p-quasi-elementary but not p-elementary.
Write G � C ⋊ P as in the De�nition 14.1.1 and set Z :� ZC (P) (cf. Lemma 14.3.6).

We must have Z ( C, otherwise G � C×P would be p-elementary. Set H :� Z×P ( G.
Claim: ResG

C indG
H (1) ≃ indC

Z (1). This follows from Mackey’s theorem and the fact
G � CH, C ∩ H � Z.

Claim: 1 appears in indG
H (1) with multiplicity one. Indeed this is a consequence of

Frobenius reciprocity. Thus one can write indG
H (1) � 1 ⊕⊕

ξ ξ, for various irreducible
representations ξ ; 1.

Now we have indC
Z (1) � 1⊕⊕

ξ ResG
C (ξ). Again, Frobenius reciprocity implies that

1 appears in indC
Z (1) with multiplicity one. Hence for each ξ in the decomposition,

ResG
C (ξ) is a sum of nontrivial one-dimensional representations λ : C → F×.
Claim: for each λ , 1 as above, we have Z ⊂ ker(λ). Indeed, indC

Z (1)(z) � id for
each z ∈ Z, since C is abelian (use the de�nition). Hence Z ⊂ ker(λ) for each λ.

Fix ξ and a component λ of ResG
C (ξ). Cli�ord’s theorem then implies that ξ is in-

duced from some representation of Gλ. The last step is to apply Lemma 14.3.6 to N � C,
which entails Gλ ( G, thereby establishing (14.2). �

Remark 14.3.7. Brauer’s result is optimal provided that only �-linear combinations of
representations are allowed. In fact, a theorem of Green (1955) asserts that if L is
a family of subgroups of G such that RF (G) � RL (G), then every H ∈ H satis�es
H ⊂ gLg−1, where g ∈ G and L ∈ L. Conjugation by g is of course permitted, since
indG

gLg−1 (W ) ≃ indG
L (W g) for every representation W of gLg−1.

Remark 14.3.8. An earlier result in this direction is Artin’s Theorem [12, Theorem 5.24],
which expresses the characters of G in terms of induction from cyclic subgroups, at the
expense of allowing coe�cients in |G |−1�. In this case one has more or less explicit
formulas for the coe�cients via Möbius inversion. The theorems of Artin and Brauer
are proved in a single shot in [16].

14.4 Applications
We give two corollaries to Brauer’s theorem. As before, we �x a �nite group G and a
�eld F of characteristic zero.

Recall that XF (G) is de�ned as the space of class functions f : G → F of the form
f �

∑r
i�1 ciχVi for some ci ∈ �, Vi ∈ RepF (G).

Corollary 14.4.1. Suppose that F is a splitting �eld for G. A class function f : G → F
belongs to XF (G) if and only if f |H ∈ XF (H) for every p-elementary subgroup H of G, for
various prime numbers p.
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Proof. The “only if” part is trivial. Assume that f |H ∈ XF (H) for every p-elementary H
and every prime number p. Write 1G �

∑
H,ξ cξindG

H (ξ) by Theorem 14.3.1, where
⋆ H ranges overH ,
⋆ 1G is the constant function 1 on G, or: the character of 1,
⋆ ξ � χW for some W ∈ RepF (H), cξ ∈ � and indG

H (· · · ) denotes the induced
character.

The character version of Proposition 14.2.1 yields

f � f · 1G �

∑

H,ξ

cξindG
H (ξ · f |H ).

By assumption ξ · f |H ∈ XF (H), hence f ∈ XF (G) since indG
H maps XF (H) to XF (G). �

For the next result (cf. [12, §5.13]), recall that m ∈ �≥1 is called an exponent of a �nite
group G, if ∀x ∈ G, xm � 1.

Corollary 14.4.2. Let G be a �nite group of exponent m. If F is a �eld of characteristic zero
containing all the m-th roots of unity, then F is a splitting �eld of G.

Proof. Take an extension E ⊃ F so that E is a splitting �eld of G. Let (V, π) be an
irreducible representation of G over E. We have to show (V, π) is de�ned over F. By
Corollary 14.3.2 we may write

[V] �
∑

H∈H
λ∈RepE (H)

cλ
[
indG

H (λ)
]

in RE (G), where λ : G → E× is 1-dimensional and cλ ∈ �. We have λ(x)m � λ(xm) � 1
for each x ∈ H, hence λ : G → F×, so the representation indG

H (λ) is actually de�ned
over F. Collecting terms, we may write

[V] �
r∑

i�1
ci[Vi ,E]

for distinct irreducible representations Vi ∈ RepF (G) and ci ∈ �. By Maschke’s the-
orem, EG is semisimple and the �-module RE (G) has a basis consisting of classes of
irreducible representations over E. Furthermore, Vi ,E and Vj,E have an irreducible fac-
tor in common if and only if Vi ≃ Vj , equivalently: i � j.

All in all, the irreducibility of V then implies ci � 1 for exactly one index i, say i � 1,
and c j � 0 for j , 1. Hence V ≃ V1,E is de�ned over F. �

Last but not the least......
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Happy Chinese New Year!

Figure 14.1: Lì Qún. Fēngyīzúshítú. Yan’an, 1944. Woodblock print
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