试题专用纸
开课编号：011M4002Y
课程名称：代数学III
任课教师：李文威

时间：2016年7月13日 10：00－11：40
总分： 100 分
The rings are all commutative with unit element $1 \neq 0$ ．The field of fractions of a domain R is denoted by $\operatorname{Frac}(R)$ ．

1．（20 points）Suppose R is a normal domain．Show that the polynomial ring $R[X]$ is normal．
Hint．Set $K:=\operatorname{Frac}(R)$ ．Suppose $y \in K(X)=\operatorname{Frac}(R[X])$ is integral over $R[X]$ and $y \neq 0$ ．First，observe that $y \in K[X]$ ，say with highest term $c X^{n}$ ．Upon passing to a finitely generated \mathbb{Z}－subalgebra of R ，we may assume R Noetherian．Integrality implies that $R[X][y]$ is a finitely generated $R[X]$－submodule in $K[X]$ ．Deduce that the coefficients of all polynomials from $R[X][y] \subset K[X]$ is a finitely generated R－ module \mathcal{C} ，thus so is its submodule $R[c]$ ．Conclude that $c \in R$ by the normality of R ．Now pass to $y-c X^{n}$ ，and so forth．

2．（20 points）Let R be a domain and write $K:=\operatorname{Frac}(R)$ ．
（a）Show that if there exists a nonzero homomorphism $\varphi: K \rightarrow R$ of R－modules， then R is a field．Hint：$t=\varphi(x) \neq 0$ will imply t is divisible by every nonzero element of R since x is．
（b）Suppose R is not a field．Show that K is flat as an R－module，but not projec－ tive．Hint：If K is projective over R ，there will be an index set I and an em－ bedding $\iota: K \hookrightarrow R^{\oplus I} \subset \prod_{i \in I} R_{i}$ ；denote the projections by $p_{i}: \prod_{j \in I} R_{j} \rightarrow R$ （for all $i \in I$ ），one of the $\varphi_{i}:=p_{i} \circ \iota \in \operatorname{Hom}_{R}(K, R)$ must be nonzero．

3．（20 points）Let \mathbb{k} be a field．Show that $A:=\mathbb{k}[X, Y] /(X) \cap(X, Y)^{2}$ is not flat over $\mathbb{k}[Y]$ ．
Hint．Since $\mathbb{k}[Y]$ is a PID，it suffices to check whether A is torsion－free or not，as a $\mathbb{k}[Y]$－module．

4．（20 points）Let $I \subset R$ be an ideal whose elements are all nilpotent．Establish the lifting of idempotents as follows．
（a）Suppose $\bar{a} \in R / I$ satisfies $\bar{a}^{2}=\bar{a}$ ，with preimage $a \in R$ ．Set $b=1-a$ ．Show that $a b=b a \in I$ ．
（b）For a, b as above and $m \geq 1$ ，put $\binom{x}{k}=x(x-1) \cdots(x-k+1) / k$ ！and

$$
\begin{aligned}
& e=\sum_{0 \leq k \leq m}\binom{2 m}{k} a^{k} b^{2 m-k}, \\
& f=\sum_{m<k \leq 2 m}\binom{2 m}{k} a^{k} b^{2 m-k} .
\end{aligned}
$$

Show that $e+f=1$ ，ef $=0$ whenever m is sufficiently large．Hint：take $m \gg 0$ so that $(a b)^{m}=0$ ．

中国科学院大学
试题专用纸

开课编号：011M4002Y
课程名称：代数学III
任课教师：李文威
（c）Under the assumption $m \gg 0$ ，deduce that $f^{2}=f$ and $f \mapsto \bar{a}$ under the quotient homomorphism．

5．（20 points）Let $R=\bigoplus_{n \geq 0} R_{n}$ be a $\mathbb{Z}_{\geq 0}$－graded ring．Given $d \in \mathbb{Z}_{\geq 1}$ ，define its d－th Veronese subring as $R_{(d)}:=\bigoplus_{k \geq 0} R_{k d}$ ，which is graded by k ．
（a）Show that R is integral over $R_{(d)}$ ；deduce $\operatorname{dim} R=\operatorname{dim} R_{(d)}$ under the（realistic） assumption that R and $R_{(d)}$ are both Noetherian．Hint．Check integrality for homogeneous elements．
（b）Recall that an ideal I in a graded ring $\bigoplus_{n} A_{n}$ is called homogeneous if it is generated by homogeneous elements；equivalently $I=\bigoplus_{n} I \cap A_{n}$ ．Establish the bijection

$$
\begin{aligned}
\{\text { homogeneous primes of } R\} & \xrightarrow{1: 1}\left\{\text { homogeneous primes of } R_{(d)}\right\} \\
\mathfrak{q} & \longmapsto \mathfrak{p}:=\mathfrak{q} \cap R_{(d)} .
\end{aligned}
$$

Hint．It is easy to see \mathfrak{p} is homogeneous and prime．Conversely，given \mathfrak{p} we define $\mathfrak{q}=\bigoplus_{k \geq 0} \mathfrak{q}_{k}$ with $\mathfrak{q}_{k}:=\left\{r \in R_{k}: r^{d} \in \mathfrak{p}\right\}$ ．Explain that \mathfrak{q} is a homogeneous prime ideal and show $\mathfrak{q} \leftrightarrow \mathfrak{p}$ are mutually inverse．

