4	ð	科	学	院	大	学	
---	---	---	---	---	---	---	--

试题专用纸

开课编号: 011M4002Y课程名称: 代数学Ⅲ任课教师: 李文威

时间: 2016 年 7 月 13 日 10:00-11:40 总分: 100 分

The rings are all commutative with unit element $1 \neq 0$. The field of fractions of a domain R is denoted by Frac(R).

1. (20 points) Suppose R is a normal domain. Show that the polynomial ring R[X] is normal.

Hint. Set $K := \operatorname{Frac}(R)$. Suppose $y \in K(X) = \operatorname{Frac}(R[X])$ is integral over R[X]and $y \neq 0$. First, observe that $y \in K[X]$, say with highest term cX^n . Upon passing to a finitely generated \mathbb{Z} -subalgebra of R, we may assume R Noetherian. Integrality implies that R[X][y] is a finitely generated R[X]-submodule in K[X]. Deduce that the coefficients of all polynomials from $R[X][y] \subset K[X]$ is a finitely generated Rmodule \mathcal{C} , thus so is its submodule R[c]. Conclude that $c \in R$ by the normality of R. Now pass to $y - cX^n$, and so forth.

- 2. (20 points) Let R be a domain and write K := Frac(R).
 - (a) Show that if there exists a nonzero homomorphism $\varphi : K \to R$ of *R*-modules, then *R* is a field. *Hint*: $t = \varphi(x) \neq 0$ will imply *t* is divisible by every nonzero element of *R* since *x* is.
 - (b) Suppose R is not a field. Show that K is flat as an R-module, but not projective. *Hint*: If K is projective over R, there will be an index set I and an embedding $\iota : K \hookrightarrow R^{\oplus I} \subset \prod_{i \in I} R_i$; denote the projections by $p_i : \prod_{j \in I} R_j \to R$ (for all $i \in I$), one of the $\varphi_i := p_i \circ \iota \in \operatorname{Hom}_R(K, R)$ must be nonzero.
- (20 points) Let k be a field. Show that A := k[X,Y]/(X) ∩ (X,Y)² is not flat over k[Y].
 Hint. Since k[Y] is a PID, it suffices to check whether A is torsion-free or not, as a k[Y]-module.
- 4. (20 points) Let $I \subset R$ be an ideal whose elements are all nilpotent. Establish the lifting of idempotents as follows.
 - (a) Suppose $\bar{a} \in R/I$ satisfies $\bar{a}^2 = \bar{a}$, with preimage $a \in R$. Set b = 1 a. Show that $ab = ba \in I$.
 - (b) For a, b as above and $m \ge 1$, put $\binom{x}{k} = x(x-1)\cdots(x-k+1)/k!$ and

$$e = \sum_{0 \le k \le m} \binom{2m}{k} a^k b^{2m-k},$$
$$f = \sum_{m < k \le 2m} \binom{2m}{k} a^k b^{2m-k}.$$

Show that e + f = 1, ef = 0 whenever *m* is sufficiently large. *Hint*: take $m \gg 0$ so that $(ab)^m = 0$.

中国科学院大学	开课编号:	011M4002Y
试题专用纸	课程名称: 任课教师:	

- (c) Under the assumption $m \gg 0$, deduce that $f^2 = f$ and $f \mapsto \bar{a}$ under the quotient homomorphism.
- 5. (20 points) Let $R = \bigoplus_{n \ge 0} R_n$ be a $\mathbb{Z}_{\ge 0}$ -graded ring. Given $d \in \mathbb{Z}_{\ge 1}$, define its d-th Veronese subring as $R_{(d)} := \bigoplus_{k \ge 0} R_{kd}$, which is graded by k.
 - (a) Show that R is integral over $R_{(d)}$; deduce dim $R = \dim R_{(d)}$ under the (realistic) assumption that R and $R_{(d)}$ are both Noetherian. *Hint.* Check integrality for homogeneous elements.
 - (b) Recall that an ideal I in a graded ring $\bigoplus_n A_n$ is called homogeneous if it is generated by homogeneous elements; equivalently $I = \bigoplus_n I \cap A_n$. Establish the bijection

{homogeneous primes of R} $\xrightarrow{1:1}$ {homogeneous primes of $R_{(d)}$ } $\mathfrak{q} \longmapsto \mathfrak{p} := \mathfrak{q} \cap R_{(d)}.$

Hint. It is easy to see \mathfrak{p} is homogeneous and prime. Conversely, given \mathfrak{p} we define $\mathfrak{q} = \bigoplus_{k \ge 0} \mathfrak{q}_k$ with $\mathfrak{q}_k := \{r \in R_k : r^d \in \mathfrak{p}\}$. Explain that \mathfrak{q} is a homogeneous prime ideal and show $\mathfrak{q} \leftrightarrow \mathfrak{p}$ are mutually inverse.