Modular Forms and Number Theory 2019, Peking University

Problem Sheet \# I

Deadline: January I, 2020

Note: You may choose any 3 problems among the following ones.
I. Let $N_{0} \in \mathbb{Z}_{\geq 1}$. Prove that there exists $\alpha \in \mathrm{GL}(2, \mathbb{Q})^{+}$and $N \in \mathbb{Z}_{\geq 1}$ such that

$$
\left.f \in M_{k}\left(\Gamma\left(N_{0}\right)\right) \Longrightarrow f\right|_{k} \alpha \in M_{k}\left(\Gamma_{1}(N)\right) .
$$

Θ Hint. Take $\alpha=\binom{N_{0}}{1}$ and a sufficiently divisible $N \in \mathbb{Z}_{\geq 1}$ such that $\alpha \Gamma_{1}(N) \alpha^{-1} \subset$ $\Gamma\left(N_{0}\right)$.
2. Let Γ be a congruence subgroup of $\operatorname{SL}(2, \mathbb{Z})$, and $f \in M_{k}(\Gamma)$ where $k \in\{1,2\}$. Show that $f(\eta)=0$ when $\eta \in \mathscr{H}$ is an elliptic point for Γ.
3. There is a modular form $f(\tau)=q^{2}+192 q^{3}-8280 q^{4}+147200 q^{5}+\cdots$ in $S_{28}(\operatorname{SL}(2, \mathbb{Z}))$, where $q=e^{2 \pi i \tau}$. Granting this fact, express f as a polynomial in E_{4}, E_{6}.
Θ Hint. We have $f / \Delta^{2} \in M_{4}(\operatorname{SL}(2, \mathbb{Z}))=\mathbb{C} E_{4}$.
4. Sketch a proof that $\operatorname{SL}(2, \mathbb{Z}) \rightarrow \operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$ is surjective for any $N \in \mathbb{Z}_{\geq 1}$. Prove that

$$
(\mathrm{SL}(2, \mathbb{Z}): \Gamma(N))=N^{3} \prod_{\substack{p \mid N \\ p: \text { prime }}}\left(1-\frac{1}{p^{2}}\right) .
$$

\bigcirc Hint. The computation for $(\operatorname{SL}(2, \mathbb{Z}): \Gamma(N))$ reduces easily to the case $N=p^{e}$. We also have $\operatorname{ker}\left[\mathrm{GL}\left(2, \mathbb{Z} / p^{e} \mathbb{Z}\right) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})\right]=1+p \mathrm{M}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$.
5. Let $\alpha_{N}=\left({ }_{N}{ }^{-1}\right) \in \mathrm{GL}(2, \mathbb{Q})^{+}$.
(a) Show that $\alpha_{N} \Gamma_{0}(N) \alpha_{N}^{-1}=\Gamma_{0}(N)$, thus $\tau \mapsto \alpha_{N}(\tau)$ descends to an automorphism of $Y_{0}(N)$.
(b) Give a moduli interpretation of this automorphism, in terms of complex tori with $\Gamma_{0}(N)$ level structures.

Hint. The moduli interpretation is $(E, B) \mapsto(E / B, E[N] / B)$, where E is a complex torus and $B \subset E[N]$ is a subgroup $\simeq \mathbb{Z} / N \mathbb{Z}$. Show that this is indeed an automorphism of $Y_{0}(N)$.
6. For $(z, \tau) \in \mathbb{C} \times \mathscr{H}$, define $q:=e^{\pi i \tau}, \eta:=e^{2 \pi i z}$ and

$$
\begin{aligned}
& \vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}} \eta^{n}, \\
& P(z ; \tau):=\prod_{n \geq 1}\left(1+q^{2 n-1} \eta\right)\left(1+q^{2 n-1} \eta^{-1}\right) .
\end{aligned}
$$

Define the lattice $\Lambda_{\tau}:=\mathbb{Z} \oplus \mathbb{Z} \tau$ in \mathbb{C}.
(a) Prove that

$$
\begin{aligned}
& \vartheta(z+\tau ; \tau)=(q \eta)^{-1} \vartheta(z ; \tau), \\
& P(z+\tau ; \tau)=(q \eta)^{-1} P(z ; \tau),
\end{aligned}
$$

and show that $z \mapsto \vartheta(z ; \tau) / P(z ; \tau)$ is a Λ_{τ}-periodic meromorphic function on \mathbb{C}.
(b) Fix τ and show that the zeros of $z \mapsto P(z ; \tau)$ are precisely $z=\frac{1}{2}+\frac{\tau}{2}+\Lambda_{\tau}$. Show that they are also the zeros of $\vartheta(z ; \tau)$, and $\vartheta(z ; \tau) / P(z ; \tau)$ depends only on q. Put $\phi(q):=$ $\vartheta(z ; \tau) / P(z ; \tau)$.
(c) Prove that

$$
\begin{aligned}
& \vartheta\left(\frac{1}{2} ; 4 \tau\right)=\vartheta\left(\frac{1}{4} ; \tau\right), \\
& P\left(\frac{1}{2} ; 4 \tau\right)=P\left(\frac{1}{4} ; \tau\right) \cdot \prod_{n \geq 1}\left(1-q^{4 n-2}\right)\left(1-q^{8 n-4}\right), \\
& \lim _{q \rightarrow 0} \phi(q)=1 .
\end{aligned}
$$

(d) Apply the previous result to show $\phi(q)=\prod_{n \geq 1}\left(1-q^{2 n}\right)$. Make the change of variables $(z ; \tau) \rightsquigarrow\left(-\frac{\tau}{4}+\frac{1}{2}, \frac{3 \tau}{2}\right)$ (accordingly, $\left.(q, \eta) \rightsquigarrow\left(q^{3 / 2},-q^{-1 / 2}\right)\right)$ to deduce Jacobi's triple product identity ${ }^{1}$

$$
\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{3 n^{2}+n}{2}}=\prod_{n \geq 1}\left(1-q^{n}\right) .
$$

Note that it yields the Fourier expansion for Dedekind's η-function.
\bigodot Hint. Just some basic operations on infinite sums and products.
Last update: January 8, 2020

[^0]
Modular Forms and Number Theory 2019, Peking University

Problem Sheet \# 2

Deadline: January 6, 2020

Note. You may choose any 2 problems among the following ones.
Conventions. We write

$$
\operatorname{GL}(2, \mathbb{Q})^{+}:=\{g \in \mathrm{GL}(2, \mathbb{Q}): \operatorname{det} g>0\}, \quad \mathscr{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}
$$

as usual. Let $N \in \mathbb{Z}_{\geq 1}$; Fourier expansions of modular forms of level $\Gamma_{1}(N)$ will be written as $f=$ $\sum_{n \geq 0} a_{n}(f) q^{n}$, where $q:=e^{2 \pi i \tau}$, and the Hecke operators T_{p} act on $M_{k}\left(\Gamma_{1}(N)\right)$. The stabilizer of an element x under a group Γ is denoted as $\operatorname{Stab}_{\Gamma}(x)$, and so forth. We write $\sigma_{b}(n)=\sum_{d \mid n} d^{b}$ for every $b \in \mathbb{R}$ and $n \in \mathbb{Z}_{\geq 1}$. Define automorphy factor as $j(\gamma, \tau)=c \tau+d$ if $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{GL}(2, \mathbb{C})$.
I. Consider the congruence subgroups $\Gamma_{0}(4)=\{ \pm 1\} \cdot \Gamma_{1}(4) \triangleright \Gamma_{1}(4)$. Note that $\binom{1}{2} \infty=\frac{1}{2}$.
(a) Show that

$$
\operatorname{Stab}_{I_{0}(4)}\left(\frac{1}{2}\right)= \pm\left(\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \mathbb{Z} \\
& 1
\end{array}\right)\left(\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right)^{-1}
$$

and this group is generated by -1 together with the element

$$
\left(\begin{array}{ll}
-1 & 1 \\
-4 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)\left(\begin{array}{cc}
1 & \\
-2 & 1
\end{array}\right) .
$$

(b) Show that $\operatorname{Stab}_{I_{1}(4)}\left(\frac{1}{2}\right)$ is generated by $\left(\begin{array}{ll}1 & -1 \\ 4 & -3\end{array}\right)$. Conclude that $\frac{1}{2}$ represents an irregular cusp for $\Gamma_{1}(4)$.
2. Let $N, k \in \mathbb{Z}_{\geq 1}$. Prove that a modular form $f=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}\left(\Gamma_{1}(N)\right)$ is uniquely determined by $\left(a_{n}\right)_{n \geq 1}$.
3. For every $\tau \in \mathscr{H}$, put $\Lambda_{\tau}:=\mathbb{Z} \tau \oplus \mathbb{Z} \subset \mathbb{C}$. The endomorphism ring of the complex torus $\mathbb{C} / \Lambda_{\tau}$ is denoted as $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right)$, which is a subring of \mathbb{C}. Show that $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right) \supsetneq \mathbb{Z}$ if and only if τ is a quadratic irrational in \mathscr{H}, i.e. there exist $A, B, C \in \mathbb{Z}$ such that $A \neq 0$ and $A \tau^{2}+B \tau+C=0$.
Θ Hint. First, show that $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right) \supsetneq \mathbb{Z}$ if and only if $\gamma \tau=\tau$ for some $\gamma \in \operatorname{GL}(2, \mathbb{Q})^{+}$ which is not a scalar. Show that the quadratic irrationals in \mathscr{H} are precisely the fixed points of elements of $\mathrm{GL}(2, \mathbb{Q})^{+}$.
4. Let $k \geq 4$ be an even integer. Show that the Eisenstein series E_{k} is orthogonal to $S_{k}(\operatorname{SL}(2, \mathbb{Z}))$ with respect to the Petersson inner product.
\propto Hint. Write $\Gamma:=\operatorname{SL}(2, \mathbb{Z})$ and $\Gamma_{\infty}:=\operatorname{Stab}_{\Gamma}(\infty)$. Argue that, for all $f \in S_{k}(\operatorname{SL}(2, \mathbb{Z}))$,

$$
\int_{\Gamma \backslash \mathscr{H}} f(\tau) \sum_{\gamma \in I_{\infty} \backslash \Gamma} \overline{j(\gamma, \tau)^{-k}} \operatorname{Im}(\tau)^{k} \mathrm{~d} \mu(\tau)=\int_{\Gamma_{\infty} \backslash \mathscr{H}} f(\tau) \operatorname{Im}(\tau)^{k-2} \mathrm{~d} x \mathrm{~d} y
$$

where $\mathrm{d} \mu(\tau)=y^{-2} \mathrm{~d} x \mathrm{~d} y$ (with $\tau=x+i y$) is the hyperbolic measure on \mathscr{H}. Find a fundamental domain for \mathscr{H} under Γ_{∞}-action, and observe that $\int_{0}^{1} f(x+i y) \mathrm{d} x=0$ for each $y \in \mathbb{R}$.
5. For each even integer $k \geq 2$, use the Eisenstein series G_{k} to define

$$
\mathscr{G}_{k}:=\frac{(k-1)!}{2(2 \pi i)^{k}} \cdot G_{k} \in M_{k}(\operatorname{SL}(2, \mathbb{Z}))
$$

so that $a_{n}\left(\mathscr{G}_{k}\right)=\sigma_{k-1}(n)$ for all $n \geq 1$. Show that \mathscr{G}_{k} is a normalized Hecke eigenform satisfying $T_{p} \mathscr{S}_{k}=\left(1+p^{k-1}\right) \mathscr{G}_{k}$ for every prime number p.
ς Hint. Compare $a_{n}\left(T_{p} \mathscr{G}_{k}\right)$ and $a_{n}\left(\mathscr{G}_{k}\right)$. The case $n=0$ is straightforward. As for the case $n \geq 1$, one has to determine $\left(1+p^{k-1}\right) \sigma_{k-1}(n)=\sigma_{k-1}(p) \sigma_{k-1}(n)$ in terms of $\sigma_{k-1}(p n)$ and $\sigma_{k-1}(n / p)($ when $p \mid n)$.

[^0]: ${ }^{1}$ More precisely, Euler's Pentagonal Numbers Theorem

