Modular Forms and Number Theory 2019, Peking University

Problem Sheet # 1

Deadline: January 1, 2020

Note: You may choose any 3 problems among the following ones.

1. Let $N_0 \in \mathbb{Z}_{\geq 1}$. Prove that there exists $\alpha \in GL(2, \mathbb{Q})^+$ and $N \in \mathbb{Z}_{\geq 1}$ such that

$$f \in M_k(\Gamma(N_0)) \implies f \mid_{\iota} \alpha \in M_k(\Gamma_1(N)).$$

- C→ **Hint**. Take $\alpha = \binom{N_0}{1}$ and a sufficiently divisible $N \in \mathbb{Z}_{\geq 1}$ such that $\alpha \Gamma_1(N) \alpha^{-1} \subset \Gamma(N_0)$.
- **2.** Let Γ be a congruence subgroup of $SL(2,\mathbb{Z})$, and $f \in M_k(\Gamma)$ where $k \in \{1,2\}$. Show that $f(\eta) = 0$ when $\eta \in \mathcal{H}$ is an elliptic point for Γ .
- 3. There is a modular form $f(\tau) = q^2 + 192q^3 8280q^4 + 147200q^5 + \cdots$ in $S_{28}(SL(2,\mathbb{Z}))$, where $q = e^{2\pi i \tau}$. Granting this fact, express f as a polynomial in E_4, E_6 .
 - \hookrightarrow **Hint**. We have $f/\Delta^2 \in M_4(SL(2, \mathbb{Z})) = \mathbb{C}E_4$.
- **4.** Sketch a proof that $SL(2,\mathbb{Z}) \to SL(2,\mathbb{Z}/N\mathbb{Z})$ is surjective for any $N \in \mathbb{Z}_{\geq 1}$. Prove that

$$(\mathrm{SL}(2,\mathbb{Z}):\Gamma(N))=N^3\prod_{\substack{p\mid N\\ p:\,\mathrm{prime}}}\left(1-\frac{1}{p^2}\right).$$

- \hookrightarrow **Hint**. The computation for $(SL(2,\mathbb{Z}):\Gamma(N))$ reduces easily to the case $N=p^e$. We also have $\ker[GL(2,\mathbb{Z}/p^e\mathbb{Z}) \to GL(2,\mathbb{Z}/p\mathbb{Z})] = 1 + pM_2(\mathbb{Z}/p^e\mathbb{Z})$.
- 5. Let $\alpha_N = \binom{N}{N}^{-1} \in GL(2, \mathbb{Q})^+$.
 - (a) Show that $\alpha_N \Gamma_0(N) \alpha_N^{-1} = \Gamma_0(N)$, thus $\tau \mapsto \alpha_N(\tau)$ descends to an automorphism of $Y_0(N)$.

- (b) Give a moduli interpretation of this automorphism, in terms of complex tori with $\Gamma_0(N)$ -level structures.
- **⇔ Hint**. The moduli interpretation is $(E, B) \mapsto (E/B, E[N]/B)$, where E is a complex torus and $B \subset E[N]$ is a subgroup $\simeq \mathbb{Z}/N\mathbb{Z}$. Show that this is indeed an automorphism of $Y_0(N)$.
- **6.** For $(z, \tau) \in \mathbb{C} \times \mathcal{H}$, define $q := e^{\pi i \tau}$, $\eta := e^{2\pi i z}$ and

$$\begin{split} \vartheta(z;\tau) &:= \sum_{n \in \mathbb{Z}} q^{n^2} \eta^n, \\ P(z;\tau) &:= \prod_{n > 1} \left(1 + q^{2n-1} \eta\right) \left(1 + q^{2n-1} \eta^{-1}\right). \end{split}$$

Define the lattice $\Lambda_{\tau} := \mathbb{Z} \oplus \mathbb{Z} \tau$ in \mathbb{C} .

(a) Prove that

$$\vartheta(z + \tau; \tau) = (q\eta)^{-1} \vartheta(z; \tau),$$

$$P(z + \tau; \tau) = (q\eta)^{-1} P(z; \tau),$$

and show that $z\mapsto \vartheta(z;\tau)/P(z;\tau)$ is a \varLambda_{τ} -periodic meromorphic function on $\mathbb{C}.$

- (b) Fix τ and show that the zeros of $z \mapsto P(z;\tau)$ are precisely $z = \frac{1}{2} + \frac{\tau}{2} + \Lambda_{\tau}$. Show that they are also the zeros of $\vartheta(z;\tau)$, and $\vartheta(z;\tau)/P(z;\tau)$ depends only on q. Put $\varphi(q) := \vartheta(z;\tau)/P(z;\tau)$.
- (c) Prove that

$$\begin{split} & \vartheta\left(\frac{1}{2}; 4\tau\right) = \vartheta\left(\frac{1}{4}; \tau\right), \\ & P\left(\frac{1}{2}; 4\tau\right) = P\left(\frac{1}{4}; \tau\right) \cdot \prod_{n \geq 1} \left(1 - q^{4n-2}\right) \left(1 - q^{8n-4}\right), \\ & \lim_{q \to 0} \phi(q) = 1. \end{split}$$

(d) Apply the previous result to show $\phi(q) = \prod_{n \ge 1} (1 - q^{2n})$. Make the change of variables $(z;\tau) \leadsto \left(-\frac{\tau}{4} + \frac{1}{2}, \frac{3\tau}{2}\right)$ (accordingly, $(q,\eta) \leadsto (q^{3/2}, -q^{-1/2})$) to deduce *Jacobi's triple product identity* ¹

$$\sum_{n\in\mathbb{Z}} (-1)^n q^{\frac{3n^2+n}{2}} = \prod_{n>1} (1-q^n).$$

Note that it yields the Fourier expansion for Dedekind's η -function.

C→ **Hint**. Just some basic operations on infinite sums and products.

Last update: January 8, 2020

¹More precisely, Euler's Pentagonal Numbers Theorem

Modular Forms and Number Theory 2019, Peking University

Problem Sheet # 2

Deadline: January 6, 2020

Note. You may choose any 2 problems among the following ones.

Conventions. We write

$$GL(2, \mathbb{Q})^+ := \{ g \in GL(2, \mathbb{Q}) : \det g > 0 \}, \quad \mathcal{H} := \{ \tau \in \mathbb{C} : Im(\tau) > 0 \}$$

as usual. Let $N \in \mathbb{Z}_{\geq 1}$; Fourier expansions of modular forms of level $\Gamma_1(N)$ will be written as $f = \sum_{n \geq 0} a_n(f) q^n$, where $q := e^{2\pi i \tau}$, and the Hecke operators T_p act on $M_k(\Gamma_1(N))$. The stabilizer of an element x under a group Γ is denoted as $\operatorname{Stab}_{\Gamma}(x)$, and so forth. We write $\sigma_b(n) = \sum_{d \mid n} d^b$ for every $b \in \mathbb{R}$ and $n \in \mathbb{Z}_{\geq 1}$. Define automorphy factor as $j(\gamma, \tau) = c\tau + d$ if $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \operatorname{GL}(2, \mathbb{C})$.

- **1.** Consider the congruence subgroups $\Gamma_0(4) = \{\pm 1\} \cdot \Gamma_1(4) \rhd \Gamma_1(4)$. Note that $\left(\frac{1}{2}\right) = \frac{1}{2}$.
 - (a) Show that

$$\operatorname{Stab}_{\Gamma_0(4)}\left(\frac{1}{2}\right) = \pm \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{-1}$$

and this group is generated by −1 together with the element

$$\begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 & 1 \end{pmatrix}.$$

- (b) Show that $\operatorname{Stab}_{\Gamma_1(4)}\left(\frac{1}{2}\right)$ is generated by $\left(\frac{1}{4}, \frac{-1}{-3}\right)$. Conclude that $\frac{1}{2}$ represents an *irregular cusp* for $\Gamma_1(4)$.
- **2.** Let $N, k \in \mathbb{Z}_{\geq 1}$. Prove that a modular form $f = \sum_{n \geq 0} a_n q^n \in M_k(\Gamma_1(N))$ is uniquely determined by $(a_n)_{n \geq 1}$.

- **3.** For every $\tau \in \mathcal{H}$, put $\Lambda_{\tau} := \mathbb{Z}\tau \oplus \mathbb{Z} \subset \mathbb{C}$. The endomorphism ring of the complex torus $\mathbb{C}/\Lambda_{\tau}$ is denoted as $\operatorname{End}(\mathbb{C}/\Lambda_{\tau})$, which is a subring of \mathbb{C} . Show that $\operatorname{End}(\mathbb{C}/\Lambda_{\tau}) \supseteq \mathbb{Z}$ if and only if τ is a quadratic irrational in \mathcal{H} , i.e. there exist $A, B, C \in \mathbb{Z}$ such that $A \neq 0$ and $A\tau^2 + B\tau + C = 0$.
 - C→ **Hint**. First, show that End($\mathbb{C}/\Lambda_{\tau}$) $\supseteq \mathbb{Z}$ if and only if $\gamma \tau = \tau$ for some $\gamma \in GL(2, \mathbb{Q})^+$ which is not a scalar. Show that the quadratic irrationals in \mathscr{H} are precisely the fixed points of elements of $GL(2, \mathbb{Q})^+$.
- **4.** Let $k \ge 4$ be an even integer. Show that the Eisenstein series E_k is orthogonal to $S_k(SL(2, \mathbb{Z}))$ with respect to the Petersson inner product.
 - $^{\subset}$ **Hint**. Write $\Gamma := SL(2, \mathbb{Z})$ and $\Gamma_{\infty} := Stab_{\Gamma}(\infty)$. Argue that, for all $f \in S_k(SL(2, \mathbb{Z}))$,

$$\int_{\Gamma \setminus \mathscr{H}} f(\tau) \sum_{\gamma \in I_{\infty} \setminus \Gamma} \overline{j(\gamma, \tau)^{-k}} \operatorname{Im}(\tau)^{k} d\mu(\tau) = \int_{I_{\infty} \setminus \mathscr{H}} f(\tau) \operatorname{Im}(\tau)^{k-2} dx dy$$

where $d\mu(\tau) = y^{-2} dx dy$ (with $\tau = x + iy$) is the hyperbolic measure on \mathcal{H} . Find a fundamental domain for \mathcal{H} under Γ_{∞} -action, and observe that $\int_0^1 f(x + iy) dx = 0$ for each $y \in \mathbb{R}$.

5. For each even integer $k \ge 2$, use the Eisenstein series G_k to define

$$\mathscr{G}_k := \frac{(k-1)!}{2(2\pi i)^k} \cdot G_k \in M_k(\mathrm{SL}(2,\mathbb{Z}))$$

so that $a_n\left(\mathcal{G}_k\right)=\sigma_{k-1}(n)$ for all $n\geq 1$. Show that \mathcal{G}_k is a normalized Hecke eigenform satisfying $T_p\mathcal{G}_k=\left(1+p^{k-1}\right)\mathcal{G}_k$ for every prime number p.

C⇒ **Hint**. Compare $a_n\left(T_p\mathcal{G}_k\right)$ and $a_n\left(\mathcal{G}_k\right)$. The case n=0 is straightforward. As for the case $n \geq 1$, one has to determine $\left(1+p^{k-1}\right)\sigma_{k-1}(n) = \sigma_{k-1}(p)\sigma_{k-1}(n)$ in terms of $\sigma_{k-1}(pn)$ and $\sigma_{k-1}(n/p)$ (when $p\mid n$).

Last update: January 8, 2020