Topics in Representation Theory 2020, Peking University

Problem Sheet # 1

Deadline: May 4, 2020

Note: You may choose any 3 problems among the following ones.

1. Classify the conjugacy classes in $GL(2, \mathbb{F}_q)$ into the following types: (i) central, (ii) non-semisimple, (iii) semisimple non-central isotropic, (iv) semisimple anisotropic. Describe these conjugacy classes and count them for each type.

Here we say $g \in GL(2, \mathbb{F}_q)$ is *semisimple* if g is diagonalizable over $\overline{\mathbb{F}_q}$ as a matrix. A semisimple element is called *isotropic* if it is diagonalizable over \mathbb{F}_q , and *anisotropic* otherwise.

$$\hookrightarrow$$
 Hint. You should obtain $(q-1)+(q-1)+\frac{(q-1)(q-2)}{2}+\frac{q^2-q}{2}$ classes in total.

2. Let F be a field with char $(F) \neq 2$, assuming for simplicity that $F = \overline{F}$. Let $(W, \langle \cdot, \cdot \rangle)$ be a symplectic F-vector space, which means: W is a finite-dimensional F-vector space and $\langle \cdot, \cdot \rangle : W \times W \to F$ is a non-degenerate bilinear form with $\langle w_1, w_2 \rangle = -\langle w_2, w_1 \rangle$ for all $w_1, w_2 \in W$. We denote by

$$Sp(W) := \left\{ g \in GL(W) : \forall w_1, w_2 \in W, \langle gw_1, gw_2 \rangle = \langle w_1, w_2 \rangle \right\}$$

the corresponding symplectic group.

We say that a vector subspace $V \subset W$ is *totally isotropic* if $\langle \cdot, \cdot \rangle$ is identically zero on $V \times V$. An *isotropic flag* in W is a chain of totally isotropic subspaces

$$0=V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_r, \quad r \in \mathbb{Z}_{\geq 0}.$$

If the flag is maximal (i.e. cannot be refined), we call it a complete flag.

- (i) Sketch a proof that the complete isotropic flags in W form a single Sp(W)-orbit.
- (ii) Let \mathscr{F} be a complete isotropic flag. Show that $B := \operatorname{Stab}_{\operatorname{Sp}(W)}(\mathscr{F})$ is a parabolic subgroup of $\operatorname{Sp}(W)$, i.e. $\operatorname{Sp}(W)/B$ is a projective variety.
- (iii) Show that *B* is also a solvable group.

(iv) Set $n:=\frac{1}{2}\dim_F W$ and let $\Omega_n:=\{\pm 1\}^n\rtimes\mathfrak{S}_n$, where \mathfrak{S}_n acts on $\{\pm 1\}^n$ by permutation; Ω_n can also be the subgroup of \mathfrak{S}_{2n} acting on $\{\pm 1,\dots,\pm n\}$ consisting of permutations commuting with $i\mapsto -i$.

Try to use the case of GL(2n) to define the invariant $\operatorname{inv}(\mathcal{F}, \mathcal{G}) \in \Omega_n$ associated to any two complete isotropic flags \mathcal{F}, \mathcal{G} so that $\operatorname{inv}(\mathcal{F}, \mathcal{G}) = \operatorname{inv}(\mathcal{F}', \mathcal{G}')$ if and only if $(\mathcal{F}, \mathcal{G})$ and $(\mathcal{F}', \mathcal{G}')$ lie in the same $\operatorname{Sp}(W)$ -orbit.

You may make free use of the properties of symplectic vector spaces in your textbooks, eg. the existence of symplectic bases, etc.

 \hookrightarrow **Hint**. Each complete isotropic flag $\mathscr{F}: 0 = V_0 \subsetneq V_1 \subsetneq \cdots$ extends to a complete flag in W

$$\tilde{\mathcal{F}}: 0 = V_0 \subsetneq \cdots \subsetneq \underbrace{V_n = V_n^{\perp}}_{\text{Lagrangian}} \subsetneq V_{n-1}^{\perp} \subsetneq \cdots \subsetneq 0^{\perp} = W.$$

Hence $\operatorname{Stab}_{\operatorname{Sp}(W)}(\mathcal{F}) = \operatorname{Stab}_{\operatorname{GL}(W)}(\tilde{\mathcal{F}}) \cap \operatorname{Sp}(W)$. For any pair \mathcal{F} , \mathcal{G} of complete isotropic flags, we obtain $\operatorname{inv}(\tilde{\mathcal{F}}, \tilde{\mathcal{G}}) \in \mathfrak{S}_{2n}$. Show that it must lie in Ω_n .

- 3. Let (W, S) be a Coxeter system. We say $w \in W$ is a *reflection* if it is conjugate to some $s \in S$. Denote by fs(W) the set of reflections in W, and by $2^{fs(W)}$ its power-set. Prove the following statements.
 - (i) There exists a unique map $N: W \to 2^{fs(W)}$ such that $N(s) = \{s\}$ for all $s \in S$, and $N(xy) = N(y)\Delta y^{-1}N(x)y$ for all $x, y \in W$ where $a\Delta b := (a \cup b) \setminus (a \cap b)$ is the symmetric difference of sets.
 - (ii) If $w = s_1 \cdots s_n$ is a reduced expression of $w \in W$ (with $s_i \in S$ for all i), and $s \in S$ satisfies $\ell(ws) < \ell(w) = n$, then there exists some $1 \le i \le n$ such that

$$ws = s_1 \cdots \widehat{s_i} \cdots s_n$$

where $\widehat{\dots}$ means the term to be removed. This is called the *Exchange Condition* for Coxeter systems. Also show that there is an equivalent "left" counterpart concerning sw.

(iii) Any two reduced expressions of $w \in W$ can be transformed to each other by applying the *braid relations* consecutively, namely: for all $s, t \in S$ with $m(s, t) \neq \infty$,

$$sts \dots = tst \dots$$
, with $m(s, t)$ terms on both sides.

→ **Hint**. This nontrivial result is part of Theorem 2.1.2 in Digne and Michel, *Representations of finite groups of Lie type*, Second Edition (2020). Read it!

- **4.** Use the Exchange Condition in the previous result to show that if (W, S) is a Coxeter system and W is finite, then there exists a unique element $w_0 \in W$ of maximal length, and it satisfies $w_0^2 = 1$.
 - This is part of Proposition 2.1.5 in Digne and Michel, *Representations of finite groups of Lie type*, Second Edition (2020). Read it!

Last update: April 14, 2020

Topics in Representation Theory 2020, Peking University

Problem Sheet # 2

Deadline: June 17, 2020

Note: You may choose any 2 problems among the following ones.

Conventions In the following problems, we fix a finite field \mathbb{F}_q and a reductive group \mathbf{G} over \mathbb{F}_q , with the usual convention $G:=\mathbf{G}(\mathbb{F}_q)$, etc. We fix a prime number $\ell \nmid q$ to define the virtual characters $R_{\mathbf{T}}^{\theta} = R_{\mathbf{T}}^{\theta,\mathbf{G}}$ of Deligne–Lusztig valued in $\overline{\mathbb{Q}_{\ell}}$. Here $\mathbf{T} \subset \mathbf{G}$ is a maximal torus over \mathbb{F}_q , and $\theta: T \to \overline{\mathbb{Q}_{\ell}}^{\times}$ is a homomorphism.

You may make free use the properties of ℓ -adic cohomologies mentioned in class.

- **1.** Let g = su be a Jordan decomposition in the linear algebraic group G, where s is semisimple and u is unipotent. Assume that $g \in G$. Show that $s, u \in G$ and g = su is also the Jordan decomposition in the finite group G.
 - **Hint.** The uniqueness of Jordan decomposition implies that s, u are Galois-invariant, hence rational. As for the second assertion, it suffices to show that semisimple (resp. unipotent) elements have order prime to p (resp. powers of p); for this purpose, one may pass to any finite extension \mathbb{F}_{q^d} .
- **2.** Let $\mathbf{P} = \mathbf{L} \ltimes \mathbf{U} \subset \mathbf{G}$ be a parabolic subgroup over \mathbb{F}_q , and let $\mathbf{T} \subset \mathbf{L}$ be a maximal torus over \mathbb{F}_q . Show that $R_{\mathbf{T}}^{\theta,\mathbf{G}} = i_p^G \left(R_{\mathbf{T}}^{\theta,\mathbf{L}} \right)$.
 - C→ **Hint**. This is Proposition 8.2 in P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields* (1976).
- 3. Show that if a maximal torus $\mathbf{T} \subset \mathbf{G}$ over \mathbb{F}_q is not contained in any proper parabolic subgroup $\mathbf{P} = \mathbf{L}\mathbf{U} \subsetneq \mathbf{G}$ over \mathbb{F}_q , then for any $\theta : T \to \overline{\mathbb{Q}_\ell}^\times$ in general position, the irreducible representation $\pm R_{\mathbf{T}}^{\theta}$ of G is cuspidal.
 - \hookrightarrow **Hint**. This is Theorem 8.3 in P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields* (1976). You may use the previous problem together with the decomposition of the regular representation of L in terms of Deligne–Lusztig virtual characters.

Last update: May 26, 2020