
Topics in Representation Theory
2020, Peking University

Problem Sheet # 1

Deadline: May 4, 2020

Note: You may choose any 3 problems among the following ones.

1. Classify the conjugacy classes inGL(2, 𝔽𝑞) into the following types: (i) central, (ii) non-semisimple,
(iii) semisimplenon-central isotropic, (iv) semisimple anisotropic. Describe these conjugacy classes
and count them for each type.
Here we say 𝑔 ∈ GL(2, 𝔽𝑞) is semisimple if 𝑔 is diagonalizable over 𝔽𝑞 as a matrix. A semisimple
element is called isotropic if it is diagonalizable over 𝔽𝑞 , and anisotropic otherwise.

� Hint. You should obtain (𝑞 − 1) + (𝑞 − 1) + (𝑞−1)(𝑞−2)
2 + 𝑞2−𝑞

2 classes in total.

2. Let 𝐹 be a field with char(𝐹 ) ≠ 2, assuming for simplicity that 𝐹 = 𝐹 . Let (𝑊 , ⟨⋅, ⋅⟩) be a
symplectic 𝐹 -vector space, which means: 𝑊 is a finite-dimensional 𝐹 -vector space and ⟨⋅, ⋅⟩ ∶
𝑊 × 𝑊 → 𝐹 is a non-degenerate bilinear form with ⟨𝑤1, 𝑤2⟩ = − ⟨𝑤2, 𝑤1⟩ for all 𝑤1, 𝑤2 ∈ 𝑊 .
We denote by

Sp(𝑊 ) ∶= {𝑔 ∈ GL(𝑊 ) ∶ ∀𝑤1, 𝑤2 ∈ 𝑊 , ⟨𝑔𝑤1, 𝑔𝑤2⟩ = ⟨𝑤1, 𝑤2⟩}

the corresponding symplectic group.
We say that a vector subspace 𝑉 ⊂ 𝑊 is totally isotropic if ⟨⋅, ⋅⟩ is identically zero on 𝑉 × 𝑉 . An
isotropic flag in𝑊 is a chain of totally isotropic subspaces

0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑟 , 𝑟 ∈ ℤ≥0 .

If the flag is maximal (i.e. cannot be refined), we call it a complete flag.

(i) Sketch a proof that the complete isotropic flags in𝑊 form a single Sp(𝑊 )-orbit.
(ii) Let ℱ be a complete isotropic flag. Show that 𝛣 ∶= StabSp(𝑊 )(ℱ ) is a parabolic subgroup

of Sp(𝑊 ), i.e. Sp(𝑊 )/𝛣 is a projective variety.
(iii) Show that 𝛣 is also a solvable group.
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(iv) Set 𝑛 ∶= 1
2 dim𝐹 𝑊 and let𝛺𝑛 ∶= {±1}𝑛 ⋊𝔖𝑛, where 𝔖𝑛 acts on {±1}𝑛 by permutation;

𝛺𝑛 can also be the subgroupof𝔖2𝑛 acting on {±1, … , ±𝑛} consisting of permutations com-
muting with 𝑖 ↦ −𝑖 .
Try to use the case ofGL(2𝑛) to define the invariant inv(ℱ , 𝒢) ∈ 𝛺𝑛 associated to any two
complete isotropic flags ℱ ,𝒢 so that inv(ℱ , 𝒢) = inv(ℱ ′, 𝒢 ′) if and only if (ℱ , 𝒢) and
(ℱ ′, 𝒢 ′) lie in the same Sp(𝑊 )-orbit.

You may make free use of the properties of symplectic vector spaces in your textbooks, eg. the
existence of symplectic bases, etc.

� Hint. Each complete isotropic flagℱ ∶ 0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ extends to a complete flag in𝑊
ℱ̃ ∶ 0 = 𝑉0 ⊊ ⋯ ⊊ 𝑉𝑛 = 𝑉 ⟂𝑛⎵

Lagrangian
⊊ 𝑉 ⟂𝑛−1 ⊊ ⋯ ⊊ 0⟂ = 𝑊 .

Hence StabSp(𝑊 )(ℱ ) = StabGL(𝑊 )(ℱ̃ ) ∩ Sp(𝑊 ). For any pairℱ ,𝒢 of complete isotropic flags,
we obtain inv(ℱ̃ , �̃� ) ∈ 𝔖2𝑛. Show that it must lie in𝛺𝑛.

3. Let (𝑊 , 𝑆) be a Coxeter system. We say 𝑤 ∈ 𝑊 is a reflection if it is conjugate to some 𝑠 ∈ 𝑆 .
Denote by fs(𝑊 ) the set of reflections in𝑊 , and by 2fs(𝑊 ) its power-set. Prove the following
statements.

(i) There exists a unique map 𝛮 ∶ 𝑊 → 2fs(𝑊 ) such that 𝛮(𝑠) = {𝑠} for all 𝑠 ∈ 𝑆 , and
𝛮(𝑥𝑦) = 𝛮(𝑦)△𝑦−1𝛮(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑊 where 𝑎△𝑏 ∶= (𝑎 ∪ 𝑏) ∖ (𝑎 ∩ 𝑏) is the
symmetric difference of sets.

(ii) If 𝑤 = 𝑠1 ⋯ 𝑠𝑛 is a reduced expression of 𝑤 ∈ 𝑊 (with 𝑠𝑖 ∈ 𝑆 for all 𝑖 ), and 𝑠 ∈ 𝑆 satisfies
ℓ (𝑤𝑠) < ℓ (𝑤) = 𝑛, then there exists some 1 ≤ 𝑖 ≤ 𝑛 such that

𝑤𝑠 = 𝑠1 ⋯ 𝑠𝑖 ⋯ 𝑠𝑛
where ⋯̂means the term to be removed. This is called the Exchange Condition for Coxeter
systems. Also show that there is an equivalent “left” counterpart concerning 𝑠𝑤 .

(iii) Any two reduced expressions of 𝑤 ∈ 𝑊 can be transformed to each other by applying the
braid relations consecutively, namely: for all 𝑠, 𝑡 ∈ 𝑆 with𝑚(𝑠, 𝑡 ) ≠ ∞,

𝑠𝑡 𝑠 ⋯ = 𝑡𝑠𝑡 ⋯ , with𝑚(𝑠, 𝑡 ) terms on both sides.

� Hint. This nontrivial result is part of Theorem 2.1.2 in Digne and Michel, Representations
of finite groups of Lie type, Second Edition (2020). Read it!

4. Use the Exchange Condition in the previous result to show that if (𝑊 , 𝑆) is a Coxeter system
and𝑊 is finite, then there exists a unique element 𝑤0 ∈ 𝑊 of maximal length, and it satisfies
𝑤 20 = 1.
� Hint. This is part of Proposition 2.1.5 in Digne andMichel,Representations of finite groups
of Lie type, Second Edition (2020). Read it!

Last update: April 14, 2020

2
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2020, Peking University

Problem Sheet # 2

Deadline: June 17, 2020

Note: You may choose any 2 problems among the following ones.

Conventions In the following problems, we fix a finite field 𝔽𝑞 and a reductive group G over 𝔽𝑞 ,
with the usual convention 𝐺 ∶= G(𝔽𝑞), etc. We fix a prime number ℓ ∤ 𝑞 to define the virtual
characters 𝑅𝜃T = 𝑅𝜃 ,GT of Deligne–Lusztig valued inℚℓ . Here T ⊂ G is a maximal torus over 𝔽𝑞 ,
and 𝜃 ∶ 𝛵 → ℚℓ

×
is a homomorphism.

You may make free use the properties of ℓ -adic cohomologies mentioned in class.

1. Let 𝑔 = 𝑠𝑢 be a Jordan decomposition in the linear algebraic group G, where 𝑠 is semisimple
and 𝑢 is unipotent. Assume that 𝑔 ∈ 𝐺 . Show that 𝑠, 𝑢 ∈ 𝐺 and 𝑔 = 𝑠𝑢 is also the Jordan
decomposition in the finite group𝐺 .
� Hint. Theuniqueness of Jordandecomposition implies that 𝑠, 𝑢 areGalois-invariant, hence
rational. As for the second assertion, it suffices to show that semisimple (resp. unipotent) ele-
ments have order prime to 𝑝 (resp. powers of 𝑝); for this purpose, one may pass to any finite
extension 𝔽𝑞𝑑 .

2. Let P = L ⋉ U ⊂ G be a parabolic subgroup over 𝔽𝑞 , and letT ⊂ L be a maximal torus over 𝔽𝑞 .
Show that𝑅𝜃 ,GT = 𝑖𝐺𝛲 (𝑅𝜃 ,LT ).

� Hint. This is Proposition 8.2 in P. Deligne and G. Lusztig, Representations of reductive
groups over finite fields (1976).

3. Show that if a maximal torus T ⊂ G over 𝔽𝑞 is not contained in any proper parabolic subgroup
P = LU ⊊ G over 𝔽𝑞 , then for any 𝜃 ∶ 𝛵 → ℚℓ

×
in general position, the irreducible represen-

tation ±𝑅𝜃T of𝐺 is cuspidal.

� Hint. This is Theorem 8.3 in P. Deligne and G. Lusztig,Representations of reductive groups
over finite fields (1976). You may use the previous problem together with the decomposition of
the regular representation of 𝐿 in terms of Deligne–Lusztig virtual characters.
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