Modular Forms and Number Theory 2021, Peking University

Problem Sheet # 1

Deadline: May 6, 2021

NOTE: Please choose any 3 problems among the following ones. In each problem, you may make free use of the results enunciated in the previous ones. You can also use the results covered in class.

- **1.** Denote $SL(2,\mathbb{Z})$ by $\Gamma(1)$. Let $f \in M_k(\Gamma(1))$ and $N \in \mathbb{Z}_{\geq 1}$, prove that $f(N\tau) \in M_k(\Gamma_0(N))$.
 - ^{C→} **Hint**. It might be helpful to know that $f \mid_k \alpha$ is uniformly bounded when $\Im(\tau) \to +\infty$ and $\Re(\tau)$ remains in a given interval, for all $\alpha \in GL(2, \mathbb{Q})^+$. To show this, take $\beta \in SL(2, \mathbb{Z})$ such that $\alpha \infty = \beta \infty$. Describe the behavior of $f \mid_k \beta \mid_k \beta^{-1} \alpha$ as $\Im(\tau) \to +\infty$.
- **2.** Let $\Delta = q \prod_{n \ge 1} (1 q^n)^{24} \in S_{12}(\Gamma(1))$, where $q = e^{2\pi i \tau}$ as usual. Show that

$$\varDelta = \frac{E_4^3 - E_6^2}{1728}.$$

- \hookrightarrow **Hint**. Use the fact that dim $S_{12}(\Gamma(1)) = 1$, and compute the coefficient of q in $E_4^3 E_6^2$.
- **3.** Let k be any positive even integer.
 - (i) Show that if $\sum_{\substack{a,b\geq 0\\4a+6b=k}}c_{ab}E_4^aE_6^b=0$ where $c_{ab}\in\mathbb{C}$, then $c_{ab}=0$ for all a,b.
 - Show that $E_4(\rho) = E_6(i) = 0$, where $\rho = \frac{1+\sqrt{-3}}{2}$, but E_4 and E_6 have no common roots since Δ is non-vanishing on \mathcal{H} .
 - (ii) Show that $M_k(\Gamma(1))$ is generated by $\left\{E_4^a E_6^b : a, b \in \mathbb{Z}_{\geq 0}, \ 4a + 6b = k\right\}$ as a vector space.
 - \hookrightarrow **Hint**. Reduce first to the case $f \in M_k(\Gamma(1))$ with k > 6, then reduce to $f \in S_k(\Gamma(1))$, and divide by Δ if $f \neq 0$.
 - (iii) Show that the \mathbb{C} -algebra $M(\Gamma(1)) := \bigoplus_k M_k(\Gamma(1))$ is isomorphic to $\mathbb{C}[X,Y]$. How are the gradings related?

4. Denote by $M_k(\mathbb{Z})$ the \mathbb{Z} -submodule of $M_k(\Gamma(1))$ consisting of modular forms $f = \sum_{n>0} a_n(f) q^n$ with $a_n(f) \in \mathbb{Z}$ for all $n \ge 0$. Show that it has the following \mathbb{Z} -basis

$$E_4^a \Delta^b$$
, $4a + 12b = k$ $k \equiv 0 \pmod{4}$,

$$E_4^a E_6 \Delta^b$$
, $6 + 4a + 12b = k$ $k \equiv 2 \pmod{4}$.

Show that it is also a \mathbb{C} -basis of $M_k(\Gamma(1))$. Therefore, one obtains a reasonable integral structure on $M_k(\Gamma(1))$ by just looking at the Fourier coefficients.

- \hookrightarrow **Hint**. One can use $B_4 = \frac{-1}{30}$ and $B_6 = \frac{1}{42}$ to check that $E_4 \in M_4(\mathbb{Z})$ and $E_6 \in M_6(\mathbb{Z})$. To get the \mathbb{Z} -basis, reuse the ideas from the previous problem.
- **5.** Prove Ramanujan's Congruence as follows. Write $\Delta = \sum_{n\geq 1} \tau(n) q^n$ and let $\sigma_b(n) := \sum_{\substack{d \mid n \\ b \neq 1}} d^b$ for all $n \in \mathbb{Z}_{\geq 1}$.
 - (i) Show that

$$\frac{E_4^3}{720} + \frac{E_6^2}{1008} \in \frac{1}{420} + q^2 \mathbb{Z}[\![q]\!].$$

- (ii) Show that Δ and $\frac{E_4^3}{720} + \frac{E_6^2}{1008}$ form a basis of $M_{12}(\Gamma(1))$.
- (iii) Consider the following rescaled Eisenstein series of weight 12

$$\mathcal{G}_{12} := \frac{-B_{12}}{24} + \sum_{n>1} \sigma_{11}(n)q^n.$$

Show that $\mathcal{G}_{12} = \varDelta + \frac{691}{156} \left(\frac{E_4^3}{720} + \frac{E_6^2}{1008} \right)$. You may use the fact that $B_{12} = \frac{-691}{2730}$.

- (iv) Deduce that $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$ for all $n \ge 1$.
- **6.** For every $N \in \mathbb{Z}_{\geq 1}$, prove that the reduction modulo N map $SL(2,\mathbb{Z}) \to SL(2,\mathbb{Z}/N\mathbb{Z})$ is surjective. Show that

$$(\mathrm{SL}(2,\mathbb{Z}):\Gamma(N)) = N^{3} \prod_{\substack{p \mid N \\ \text{prime}}} \left(1 - \frac{1}{p^{2}}\right),$$
$$(\mathrm{SL}(2,\mathbb{Z}):\Gamma_{1}(N)) = N^{2} \prod_{\substack{p \mid N \\ \text{prime}}} \left(1 - \frac{1}{p^{2}}\right).$$

$$(\mathrm{SL}(2,\mathbb{Z}):\Gamma_1(N))=N^2\prod_{\substack{p\mid N\ \mathrm{prime}}}\left(1-\frac{1}{p^2}\right).$$

Last update: June 23, 2021