Modular Forms and Number Theory 202I, Peking University

Problem Sheet \# 2

Deadline: June 2Ith, 202I

Note: Please choose any 2 problems among the following ones. You can use the results covered in class.

1. Let $k \in \mathbb{Z}, k \neq 0$ and let $\gamma \in \operatorname{SL}(2, \mathbb{R})$ be an elliptic transformation, i.e. γ has exactly one fixed point in \mathscr{H}. Let $f: \mathscr{H} \rightarrow \mathbb{C}$ be a holomorphic function. Show that if $\left.f\right|_{k} \gamma=f$ and γ has infinite order, then $f=0$.
Θ Hint. First reduce to the case $\gamma(i)=i$. Next, reduce to the case $k \in 2 \mathbb{Z}$ so that the problem can be interpreted by differential forms (or their \otimes-powers). Translate the problem onto the unit disc.
2. For every $\tau \in \mathscr{H}$, put $\Lambda_{\tau}:=\mathbb{Z} \tau \oplus \mathbb{Z} \subset \mathbb{C}$. The endomorphism ring of the complex torus $\mathbb{C} / \Lambda_{\tau}$ is denoted as $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right)$, which is a subring of \mathbb{C}. Show that $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right) \ni \mathbb{Z}$ if and only if τ is a quadratic irrational in \mathscr{H}, i.e. there exist $A, B, C \in \mathbb{Z}$ such that $A \neq 0$ and $A \tau^{2}+B \tau+C=0$.
Θ Hint. First, show that $\operatorname{End}\left(\mathbb{C} / \Lambda_{\tau}\right) \supsetneq \mathbb{Z}$ if and only if $\gamma \tau=\tau$ for some $\gamma \in \operatorname{GL}(2, \mathbb{Q})^{+}$ which is not a scalar. Show that the quadratic irrationals in \mathscr{H} are precisely the fixed points of elements of GL $(2, \mathbb{Q})^{+}$. See $\S 8.6$ of the textbook.
3. Let $k>2$ be an even integer. Show that the Eisenstein series E_{k} is orthogonal to $S_{k}(\operatorname{SL}(2, \mathbb{Z}))$ with respect to the Petersson inner product.

Hint. Write $\Gamma:=\mathrm{SL}(2, \mathbb{Z})$ and $\Gamma_{\infty}:=\operatorname{Stab}_{\Gamma}(\infty)$. Argue that, for all $f \in S_{k}(\operatorname{SL}(2, \mathbb{Z}))$,

$$
\int_{\Gamma \backslash \mathscr{H}} f(\tau) \sum_{\gamma \in I_{\infty} \backslash \Gamma} \overline{j(\gamma, \tau)^{-k}} \operatorname{Im}(\tau)^{k} \mathrm{~d} \mu(\tau)=\int_{\Gamma_{\infty} \backslash \mathscr{H}} f(\tau) \operatorname{Im}(\tau)^{k-2} \mathrm{~d} x \mathrm{~d} y
$$

where $\mathrm{d} \mu(\tau)=y^{-2} \mathrm{~d} x \mathrm{~d} y$ (with $\tau=x+i y$) is the hyperbolic measure on \mathscr{H}. Find a fundamental domain for \mathscr{H} under Γ_{∞}-action, and observe that $\int_{0}^{1} f(x+i y) \mathrm{d} x=0$ for each $y \in \mathbb{R}$.
4. For each even integer $k>2$, use the Eisenstein series G_{k} to define

$$
\mathscr{\mathscr { G }}_{k}:=\frac{(k-1)!}{2(2 \pi i)^{k}} \cdot G_{k} \in M_{k}(\operatorname{SL}(2, \mathbb{Z}))
$$

so that $a_{n}\left(\mathscr{G}_{k}\right)=\sigma_{k-1}(n)$ for all $n \geq 1$. Show that \mathscr{S}_{k} is a normalized Hecke eigenform satisfying $T_{p} \mathscr{G}_{k}=\left(1+p^{k-1}\right) \mathscr{S}_{k}$ for every prime number p.
\propto Hint. Compare $a_{n}\left(T_{p} \mathscr{C}_{k}\right)$ and $a_{n}\left(\mathscr{G}_{k}\right)$. The case $n=0$ is straightforward. As for the case $n \geq 1$, one has to determine $\left(1+p^{k-1}\right) \sigma_{k-1}(n)=\sigma_{k-1}(p) \sigma_{k-1}(n)$ in terms of $\sigma_{k-1}(p n)$ and $\sigma_{k-1}(n / p)$ (when $\left.p \mid n\right)$.
5. (Reading homework: real-analytic Eisenstein series) Let $\tau=x+i y \in \mathscr{H}$. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$, define

$$
E(\tau, s):=\frac{\pi^{-s} \Gamma(s)}{2} \sum_{\substack{\left.(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq 0,0\right)}} \frac{y^{s}}{|m \tau+n|^{2 s}} .
$$

Show that
(i) the sum converges absolutely when $\operatorname{Re}(s)>1$, and

$$
E(\tau, s)=\frac{1}{2} \cdot \pi^{-s} \Gamma(s) \zeta(2 s) \sum_{\gamma} \operatorname{Im}(\gamma \tau)^{s}
$$

where $\operatorname{Re}(s)>1$ and γ ranges over $\binom{1}{1} \backslash \operatorname{SL}(2, \mathbb{Z})$.
(ii) $E(\gamma \tau, s)=E(\tau, s)$ for all $\gamma \in \operatorname{SL}(2, \mathbb{Z})$;
(iii) $E(\tau, s)$ extends to a meromorphic function in $s \in \mathbb{C}$ and satisfies

$$
E(\tau, s)=E(\tau, 1-s) .
$$

Note that $E(\tau, s)$ is only real-analytic in τ.
Θ Hint. For (iii), see either

- D. Bump, Automorphic forms and representations, Theorem I.6.I / Exercise I.6.2, or
- F. Diamond and J. Shurman, A first course in modular forms (GTM 228), §4.Io.

The second reference treats a more generalized setting with level N, and takes the sum of $y^{s}(m \tau+n)^{-k}|m \tau+n|^{-2 s}$ instead; taking $s=0$ recovers the holomorphic Eisenstein series.

