Modular Forms and Number Theory 2021, Peking University

Problem Sheet # 2

Deadline: June 21th, 2021

NOTE: Please choose any 2 problems among the following ones. You can use the results covered in class.

I. Let $k \in \mathbb{Z}$, $k \neq 0$ and let $\gamma \in SL(2, \mathbb{R})$ be an elliptic transformation, i.e. γ has exactly one fixed point in \mathcal{H} . Let $f : \mathcal{H} \to \mathbb{C}$ be a holomorphic function. Show that if $f \mid_k \gamma = f$ and γ has infinite order, then f = 0.

⇔ **Hint**. First reduce to the case $\gamma(i) = i$. Next, reduce to the case $k \in 2\mathbb{Z}$ so that the problem can be interpreted by differential forms (or their ⊗-powers). Translate the problem onto the unit disc.

2. For every $\tau \in \mathcal{H}$, put $\Lambda_{\tau} := \mathbb{Z}\tau \oplus \mathbb{Z} \subset \mathbb{C}$. The endomorphism ring of the complex torus $\mathbb{C}/\Lambda_{\tau}$ is denoted as $\operatorname{End}(\mathbb{C}/\Lambda_{\tau})$, which is a subring of \mathbb{C} . Show that $\operatorname{End}(\mathbb{C}/\Lambda_{\tau}) \supseteq \mathbb{Z}$ if and only if τ is a quadratic irrational in \mathcal{H} , i.e. there exist $A, B, C \in \mathbb{Z}$ such that $A \neq 0$ and $A\tau^2 + B\tau + C = 0$.

^C **Hint**. First, show that End($\mathbb{C}/\Lambda_{\tau}$) ⊇ \mathbb{Z} if and only if $\gamma \tau = \tau$ for some $\gamma \in GL(2, \mathbb{Q})^+$ which is not a scalar. Show that the quadratic irrationals in \mathcal{H} are precisely the fixed points of elements of $GL(2, \mathbb{Q})^+$. See §8.6 of the textbook.

3. Let k > 2 be an even integer. Show that the Eisenstein series E_k is orthogonal to $S_k(SL(2, \mathbb{Z}))$ with respect to the Petersson inner product.

 $^{⊂}$ **Hint**. Write $\Gamma := SL(2, \mathbb{Z})$ and $\Gamma_{\infty} := Stab_{\Gamma}(\infty)$. Argue that, for all $f \in S_k(SL(2, \mathbb{Z}))$,

$$\int_{\Gamma \setminus \mathscr{H}} f(\tau) \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \overline{j(\gamma, \tau)^{-k}} \operatorname{Im}(\tau)^{k} d\mu(\tau) = \int_{\Gamma_{\infty} \setminus \mathscr{H}} f(\tau) \operatorname{Im}(\tau)^{k-2} dx dy$$

where $d\mu(\tau) = y^{-2} dx dy$ (with $\tau = x + iy$) is the hyperbolic measure on \mathcal{H} . Find a fundamental domain for \mathcal{H} under Γ_{∞} -action, and observe that $\int_{0}^{1} f(x + iy) dx = 0$ for each $y \in \mathbb{R}$.

4. For each even integer k > 2, use the Eisenstein series G_k to define

$$\mathcal{G}_k := \frac{(k-1)!}{2(2\pi i)^k} \cdot G_k \in M_k(\mathrm{SL}(2,\mathbb{Z}))$$

so that $a_n(\mathscr{G}_k) = \sigma_{k-1}(n)$ for all $n \ge 1$. Show that \mathscr{G}_k is a normalized Hecke eigenform satisfying $T_p\mathscr{G}_k = (1 + p^{k-1})\mathscr{G}_k$ for every prime number p.

^C **Hint**. Compare $a_n(T_p \mathcal{G}_k)$ and $a_n(\mathcal{G}_k)$. The case n = 0 is straightforward. As for the case $n \ge 1$, one has to determine $(1 + p^{k-1}) \sigma_{k-1}(n) = \sigma_{k-1}(p) \sigma_{k-1}(n)$ in terms of $\sigma_{k-1}(pn)$ and $\sigma_{k-1}(n/p)$ (when $p \mid n$).

5. (Reading homework: real-analytic Eisenstein series) Let $\tau = x + iy \in \mathcal{H}$. For $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$, define

$$E(\tau,s) := \frac{\pi^{-s} \Gamma(s)}{2} \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \frac{y^s}{|m\tau + n|^{2s}}.$$

Show that

(i) the sum converges absolutely when $\operatorname{Re}(s) > 1$, and

$$E(\tau,s) = \frac{1}{2} \cdot \pi^{-s} \Gamma(s) \zeta(2s) \sum_{\gamma} \operatorname{Im}(\gamma \tau)^{s}$$

where $\operatorname{Re}(s) > 1$ and γ ranges over $\begin{pmatrix} 1 & \mathbb{Z} \\ 1 \end{pmatrix} \setminus \operatorname{SL}(2, \mathbb{Z})$.

- (ii) $E(\gamma\tau, s) = E(\tau, s)$ for all $\gamma \in SL(2, \mathbb{Z})$;
- (iii) $E(\tau, s)$ extends to a meromorphic function in $s \in \mathbb{C}$ and satisfies

$$E(\tau,s)=E(\tau,1-s).$$

Note that $E(\tau, s)$ is only real-analytic in τ .

← Hint. For (iii), see either

- D. Bump, Automorphic forms and representations, Theorem 1.6.1 / Exercise 1.6.2, or
- F. Diamond and J. Shurman, A first course in modular forms (GTM 228), §4.10.

The second reference treats a more generalized setting with level N, and takes the sum of $y^{s}(m\tau + n)^{-k}|m\tau + n|^{-2s}$ instead; taking s = 0 recovers the holomorphic Eisenstein series.

Last update: June 10, 2021