中国科学院大学

试题专用纸

开课编号: 210002H

课程名称:代数学 I 任课教师:李文威

时间: 2015年1月6日13:30-15:10

总分: 100 分

1. (15 points) Let E be the splitting field of $P(X) = X^3 - X + 1 \in \mathbb{Q}[X]$; we may assume $E \subset \mathbb{C}$. Determine the Galois group $Gal(E/\mathbb{Q})$.

Solution. We present one possible approach below.

- (i) P(X) is irreducible over \mathbb{Q} : this is equivalent to the assertion that P has no roots in \mathbb{Q} . By elementary algebra, it suffices to check that ± 1 are not roots.
- (ii) P(X) has exactly one real root this can be done by calculus. Details omitted.
- (iii) We may embed $\operatorname{Gal}(E/\mathbb{Q})$ into \mathfrak{S}_3 by its action on the three roots in E. Since P(X) is irreducible, $\operatorname{Gal}(E/\mathbb{Q})$ acts transitively; the complex conjugation permutes the roots of P in $E \subset \mathbb{C}$, therefore gives rise to a transposition in $\operatorname{Gal}(E/\mathbb{Q})$. Hence $\operatorname{Gal}(E/\mathbb{Q}) = \mathfrak{S}_3$.

Alternatively, one many also argue by considering the discriminant of P(X), etc.

2. (15 points) Show that for every $n \ge 1$, there exists a field embedding

$$\iota: \mathbb{Q}(X_1,\ldots,X_n) \hookrightarrow \mathbb{C}$$

over \mathbb{Q} , where $\mathbb{Q}(X_1,\ldots,X_n)$ stands for the field of rational functions in the variables X_1,\ldots,X_n .

Solution. Using the facts (i) if E/F is an algebraic extension of infinite fields, then |E| = |F|; (ii) $|\mathbb{C}| > |\mathbb{Q}|$, one constructs a sequence of complex numbers $\alpha_1, \alpha_2, \ldots$ without nontrivial polynomial relations over \mathbb{Q} . The construction goes recursively as follows.

- (a) Choose any transcendental number α_1 .
- (b) Assume that $n \in \mathbb{Z}_{\geq 1}$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ have been chosen so that for every $P \in \mathbb{Q}[X_1, \ldots, X_n]$, we have $P(\alpha_1, \ldots, \alpha_n) \neq 0$ whenever $P \neq 0$. In other words, there is no nontrivial polynomial relation among $\alpha_1, \ldots, \alpha_n$. Now choose $\alpha_{n+1} \in \mathbb{C}$ that is not algebraic over $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$. This is possible since $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ is countable whereas \mathbb{C} is not.
- (c) We contend that for any $P \in \mathbb{Q}[X_1, \ldots, X_{n+1}]$, $P(\alpha_1, \ldots, \alpha_{n+1}) = 0$ implies P = 0. Indeed, assume $P \neq 0$ and let $Q(X_{n+1}) := P(\alpha_1, \ldots, \alpha_n, X_{n+1})$, $Q \in \mathbb{Q}(\alpha_1, \ldots, \alpha_n)[X_{n+1}]$. If Q = 0 there would be some polynomial relations among $\alpha_1, \ldots, \alpha_n$ (to see this, regard P as a nonzero element of $\mathbb{Q}[X_1, \ldots, X_n][X_{n+1}]$ and look at its coefficients in the ring $\mathbb{Q}[X_1, \ldots, X_n]$, which is impossible. However $Q(\alpha_{n+1}) = 0$ is also impossible by the previous step. Thus P = 0.

Given n, putting $\iota(P(X_1,\ldots,X_n))=P(\alpha_1,\ldots,\alpha_n)$ for all $P\in\mathbb{Q}(X_1,\ldots,X_n)$ defines the required embedding.

3. (20 points) Let R be a ring with unit and let $I \subset R$ be a two-sided ideal whose elements are all nilpotent. Establish the *lifting of idempotents* from R/I to R by the following instructions.

中国科学院大学

试题专用纸

开课编号: 210002H

课程名称:代数学 I 任课教师:李文威

(a) Let $\bar{a} \in R/I$ be an idempotent, i.e. $\bar{a}^2 = \bar{a}$. Suppose that $a \in R$, $a \mapsto \bar{a}$ under the quotient homomorphism $R \to R/I$, and set b = 1 - a. Show that $ab = ba \in I$.

(b) For a, b as above and $m \in \mathbb{Z}_{\geq 1}$, put

$$e = \sum_{0 \le k \le m} {2m \choose k} a^k b^{2m-k},$$
$$f = \sum_{m \le k \le 2m} {2m \choose k} a^k b^{2m-k}$$

where $\binom{u}{v} := \frac{u!}{v!(u-v)!}$. Show that e+f=1, ef=0 whenever m is sufficiently large. Hint: take $m \gg 0$ so that $(ab)^m = 0$.

(c) Under the assumption $m \gg 0$, deduce that $f^2 = f$ (i.e. $f \in R$ is an idempotent) and f has image \bar{a} .

Solution. We have $ab=a-a^2=ba$, which lies in I since $\bar{a}=\bar{a}^2$. The equation e+f=1 follows from the binomial identity. Since b (resp. a) appears with powers $\geq m$ in the expression of e (resp. that of f) and ab=ba, we get ef=0 whenever $(ab)^m=0$, which holds for $m\gg 0$ since $ab\in I$ is nilpotent. Finally, $\bar{f}=\bar{a}^m=\bar{a}$ since $\bar{a}\bar{b}=0$. Also, $f^2-f=(f-1)f=ef=0$.

4. (10 points) Let A be an infinite-dimensional simple algebra over a field F. Show that every nonzero left A-module is infinite-dimensional over F.

Solution. For any left A-module M, its annihilator $\operatorname{ann}(M)$ is a two-sided ideal. The map $a\mapsto [M\ni m\mapsto am]$ induces an embedding $A/\operatorname{ann}(M)\hookrightarrow \operatorname{End}_F(M)$ of F-algebras. When $M\neq \{0\}$ we must have $\operatorname{ann}(M)=\{0\}$. Were M finite-dimensional, $A=A/\operatorname{ann}(M)$ would be finite-dimensional as well. Contradiction.

5. (10 points) Let (V, π) be an absolutely irreducible representation of a finite group G over a field F (notation: V is an F-vector space and $\pi: G \to \operatorname{Aut}_F(V)$). Denote by Z(G) the center of G. Show that there is a group homomorphism $\omega_{\pi}: Z(G) \to F^{\times}$, called the *central character* of π , such that $\pi(z) = \omega_{\pi}(z) \cdot \operatorname{id}_V$ for all $z \in Z(G)$.

Solution. Observe that $\pi(z): V \to V$ belongs to $\operatorname{End}_G(V)$, the latter F-algebra equals F as V is absolutely irreducible. Hence there exists a map $z \mapsto \omega_{\pi}(z) \in F^{\times}$ with $\pi(z) = \omega_{\pi}(z) \cdot \operatorname{id}_V$. From $\pi(z_1)\pi(z_2) = \pi(z_1z_2)$ one infers that $\omega_{\pi}: Z(G) \to F^{\times}$ is a group homomorphism.

6. (15 points) Let $H \subset G$ be finite groups, $g \in G$ and (σ, V) be a representation of H over some field F. Set $H^g := g^{-1}Hg$ and consider the g-twisted representation

$$\sigma^g(\cdot) := \sigma(g \cdot g^{-1}) : H^g \to \operatorname{Aut}_F(V)$$

on the same space V. Show that there is an isomorphism of induced representations

$$\operatorname{Ind}_H^G(\sigma) \xrightarrow{\sim} \operatorname{Ind}_{H^g}^G(\sigma^g)$$

中国科学院大学

试题专用纸

开课编号: 210002H

课程名称:代数学 I

任课教师: 李文威

given by sending $f: G \to V$ to $f(g \cdot): G \to V$.

 $\@Delta Solution$. It is straightforward to check that $f(g \cdot)$ lies in $\operatorname{Ind}_{H^g}^G(\sigma^g)$, and that $f \mapsto f(g \cdot)$ defines a homomorphism between induced representations. Its inverse is simply $f' \mapsto f'(g^{-1} \cdot)$.

7. (15 points) Fix a prime number p. For every q of the form $q = p^n$, $n \in \mathbb{Z}_{\geq 1}$, denote by \mathbb{F}_q the finite field with q elements; thus $\mathbb{F}_q \supset \mathbb{F}_p$. Set

$$\pi_a := |\{\alpha \in \mathbb{F}_a : \mathbb{F}_a = \mathbb{F}_p(\alpha)\}|.$$

- (i) Show that $p^n = \sum_{d|n} \pi_{p^d}$ for all $n \in \mathbb{Z}_{\geq 1}$.
- (ii) Infer that $\pi_{p^n} = \sum_{d|n} \mu(d) p^{\frac{n}{d}}$; here μ stands for the Möbius function:

$$\mu(d) = \begin{cases} (-1)^{|\{\text{prime factors of } d\}|}, & d \text{ squarefree,} \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbb{F}_{p^n} = \bigsqcup_{d|n} \left\{ \alpha \in \mathbb{F}_{p^n} : \mathbb{F}_p(\alpha) = \mathbb{F}_{p^d} \right\}$$
$$= \bigsqcup_{d|n} \left\{ \alpha \in \mathbb{F}_{p^d} : \mathbb{F}_p(\alpha) = \mathbb{F}_{p^d} \right\}.$$

The second statement follows immediately by Möbius inversion formula.