开课编号： 210002 H
课程名称：代数学 I
任课教师：李文威
时间：2015年1月6日 13：30－15：10
总分： 100 分

1．（15 points）Let E be the splitting field of $P(X)=X^{3}-X+1 \in \mathbb{Q}[X]$ ；we may assume $E \subset \mathbb{C}$ ．Determine the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ ．

Solution．We present one possible approach below．
（i）$P(X)$ is irreducible over \mathbb{Q} ：this is equivalent to the assertion that P has no roots in \mathbb{Q} ．By elementary algebra，it suffices to check that ± 1 are not roots．
（ii）$P(X)$ has exactly one real root－this can be done by calculus．Details omitted．
（iii）We may embed $\operatorname{Gal}(E / \mathbb{Q})$ into \mathfrak{S}_{3} by its action on the three roots in E ． Since $P(X)$ is irreducible， $\operatorname{Gal}(E / \mathbb{Q})$ acts transitively；the complex conjuga－ tion permutes the roots of P in $E \subset \mathbb{C}$ ，therefore gives rise to a transposition in $\operatorname{Gal}(E / \mathbb{Q})$ ．Hence $\operatorname{Gal}(E / \mathbb{Q})=\mathfrak{S}_{3}$ ．

Alternatively，one many also argue by considering the discriminant of $P(X)$ ，etc．
2．（15 points）Show that for every $n \geq 1$ ，there exists a field embedding

$$
\iota: \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right) \hookrightarrow \mathbb{C}
$$

over \mathbb{Q} ，where $\mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ stands for the field of rational functions in the vari－ ables X_{1}, \ldots, X_{n} ．
Solution．Using the facts（i）if E / F is an algebraic extension of infinite fields， then $|E|=|F|$ ；（ii）$|\mathbb{C}|>|\mathbb{Q}|$ ，one constructs a sequence of complex numbers $\alpha_{1}, \alpha_{2}, \ldots$ without nontrivial polynomial relations over \mathbb{Q} ．The construction goes recursively as follows．
（a）Choose any transcendental number α_{1} ．
（b）Assume that $n \in \mathbb{Z}_{\geq 1}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ have been chosen so that for every $P \in$ $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ ，we have $P\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$ whenever $P \neq 0$ ．In other words， there is no nontrivial polynomial relation among $\alpha_{1}, \ldots, \alpha_{n}$ ．Now choose $\alpha_{n+1} \in$ \mathbb{C} that is not algebraic over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ．This is possible since $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is countable whereas \mathbb{C} is not．
（c）We contend that for any $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{n+1}\right], P\left(\alpha_{1}, \ldots, \alpha_{n+1}\right)=0$ implies $P=0$ ．Indeed，assume $P \neq 0$ and let $Q\left(X_{n+1}\right):=P\left(\alpha_{1}, \ldots, \alpha_{n}, X_{n+1}\right), Q \in$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left[X_{n+1}\right]$ ．If $Q=0$ there would be some polynomial relations among $\alpha_{1}, \ldots, \alpha_{n}$（to see this，regard P as a nonzero element of $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]\left[X_{n+1}\right]$ and look at its coefficients in the ring $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ ），which is impossible． However $Q\left(\alpha_{n+1}\right)=0$ is also impossible by the previous step．Thus $P=0$ ．
Given n ，putting $\iota\left(P\left(X_{1}, \ldots, X_{n}\right)\right)=P\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for all $P \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ defines the required embedding．

3．（20 points）Let R be a ring with unit and let $I \subset R$ be a two－sided ideal whose elements are all nilpotent．Establish the lifting of idempotents from R / I to R by the following instructions．

课程名称：代数学 I

任课教师：李文威
（a）Let $\bar{a} \in R / I$ be an idempotent，i．e． $\bar{a}^{2}=\bar{a}$ ．Suppose that $a \in R, a \mapsto \bar{a}$ under the quotient homomorphism $R \rightarrow R / I$ ，and set $b=1-a$ ．Show that $a b=b a \in I$ ．
（b）For a, b as above and $m \in \mathbb{Z}_{\geq 1}$ ，put

$$
\begin{aligned}
& e=\sum_{0 \leq k \leq m}\binom{2 m}{k} a^{k} b^{2 m-k}, \\
& f=\sum_{m<k \leq 2 m}\binom{2 m}{k} a^{k} b^{2 m-k}
\end{aligned}
$$

where $\binom{u}{v}:=\frac{u!}{v!(u-v)!}$ ．Show that $e+f=1$ ，ef $=0$ whenever m is sufficiently large．Hint：take $m \gg 0$ so that $(a b)^{m}=0$ ．
（c）Under the assumption $m \gg 0$ ，deduce that $f^{2}=f$（i．e．$f \in R$ is an idempo－ tent）and f has image \bar{a} ．

Solution．We have $a b=a-a^{2}=b a$ ，which lies in I since $\bar{a}=\bar{a}^{2}$ ．The equation $e+f=1$ follows from the binomial identity．Since b（resp．a）appears with powers $\geq m$ in the expression of e（resp．that of f ）and $a b=b a$ ，we get $e f=0$ whenever $(a b)^{m}=0$ ，which holds for $m \gg 0$ since $a b \in I$ is nilpotent．Finally，$f=\bar{a}^{m}=\bar{a}$ since $\bar{a} \bar{b}=0$ ．Also，$f^{2}-f=(f-1) f=e f=0$ ．

4．（10 points）Let A be an infinite－dimensional simple algebra over a field F ．Show that every nonzero left A－module is infinite－dimensional over F ．
Solution．For any left A－module M ，its annihilator $\operatorname{ann}(M)$ is a two－sided ideal． The map $a \mapsto[M \ni m \mapsto a m]$ induces an embedding $A / \operatorname{ann}(M) \hookrightarrow \operatorname{End}_{F}(M)$ of F－ algebras．When $M \neq\{0\}$ we must have ann $(M)=\{0\}$ ．Were M finite－dimensional， $A=A / \operatorname{ann}(M)$ would be finite－dimensional as well．Contradiction．

5．（10 points）Let (V, π) be an absolutely irreducible representation of a finite group G over a field F（notation：V is an F－vector space and $\left.\pi: G \rightarrow \operatorname{Aut}_{F}(V)\right)$ ． Denote by $Z(G)$ the center of G ．Show that there is a group homomorphism $\omega_{\pi}: Z(G) \rightarrow F^{\times}$，called the central character of π ，such that $\pi(z)=\omega_{\pi}(z) \cdot \mathrm{id}_{V}$ for all $z \in Z(G)$ ．
Solution．Observe that $\pi(z): V \rightarrow V$ belongs to $\operatorname{End}_{G}(V)$ ，the latter F－algebra equals F as V is absolutely irreducible．Hence there exists a map $z \mapsto \omega_{\pi}(z) \in F^{\times}$ with $\pi(z)=\omega_{\pi}(z) \cdot \mathrm{id}_{V}$ ．From $\pi\left(z_{1}\right) \pi\left(z_{2}\right)=\pi\left(z_{1} z_{2}\right)$ one infers that $\omega_{\pi}: Z(G) \rightarrow F^{\times}$ is a group homomorphism．

6．（15 points）Let $H \subset G$ be finite groups，$g \in G$ and (σ, V) be a representation of H over some field F ．Set $H^{g}:=g^{-1} H g$ and consider the g－twisted representation

$$
\sigma^{g}(\cdot):=\sigma\left(g \cdot g^{-1}\right): H^{g} \rightarrow \operatorname{Aut}_{F}(V)
$$

on the same space V ．Show that there is an isomorphism of induced representations

$$
\operatorname{Ind}_{H}^{G}(\sigma) \xrightarrow{\sim} \operatorname{Ind}_{H^{g}}^{G}\left(\sigma^{g}\right)
$$

开课编号： 210002 H
课程名称：代数学 I
任课教师：李文威
given by sending $f: G \rightarrow V$ to $f(g \cdot): G \rightarrow V$ ．
Solution．It is straightforward to check that $f(g \cdot)$ lies in $\operatorname{Ind}_{H^{g}}^{G}\left(\sigma^{g}\right)$ ，and that $f \mapsto f(g \cdot)$ defines a homomorphism between induced representations．Its inverse is simply $f^{\prime} \mapsto f^{\prime}\left(g^{-1} \cdot\right)$ ．

7．（ 15 points）Fix a prime number p ．For every q of the form $q=p^{n}, n \in \mathbb{Z}_{\geq 1}$ ， denote by \mathbb{F}_{q} the finite field with q elements；thus $\mathbb{F}_{q} \supset \mathbb{F}_{p}$ ．Set

$$
\pi_{q}:=\left|\left\{\alpha \in \mathbb{F}_{q}: \mathbb{F}_{q}=\mathbb{F}_{p}(\alpha)\right\}\right| .
$$

（i）Show that $p^{n}=\sum_{d \mid n} \pi_{p^{d}}$ for all $n \in \mathbb{Z}_{\geq 1}$ ．
（ii）Infer that $\pi_{p^{n}}=\sum_{d \mid n} \mu(d) p^{\frac{n}{d}}$ ；here μ stands for the Möbius function：

$$
\mu(d)= \begin{cases}(-1)^{\mid\{\text {prime factors of } d\} \mid}, & d \text { squarefree } \\ 0, & \text { otherwise }\end{cases}
$$

Solution．As shown in the lecture notes，for every $d \mid n$ there is exactly one intermediate field $\mathbb{F}_{p} \subset K \subset \mathbb{F}_{p^{n}}$ with $\left[K: \mathbb{F}_{p}\right]=d$（thus $K \simeq \mathbb{F}_{p^{d}}$ ），and all intermediate fields are so obtained．The first statement follows by the decomposition into disjoint union

$$
\begin{aligned}
\mathbb{F}_{p^{n}} & =\bigsqcup_{d \mid n}\left\{\alpha \in \mathbb{F}_{p^{n}}: \mathbb{F}_{p}(\alpha)=\mathbb{F}_{p^{d}}\right\} \\
& =\bigsqcup_{d \mid n}\left\{\alpha \in \mathbb{F}_{p^{d}}: \mathbb{F}_{p}(\alpha)=\mathbb{F}_{p^{d}}\right\} .
\end{aligned}
$$

The second statement follows immediately by Möbius inversion formula．

