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1. (15 points) Let E be the splitting field of P(X) = X3 — X + 1 € Q[X]; we may
assume £ C C. Determine the Galois group Gal(E£/Q).

& Solution. We present one possible approach below.

(i) P(X) is irreducible over Q: this is equivalent to the assertion that P has no

roots in Q. By elementary algebra, it suffices to check that +1 are not roots.

(ii) P(X) has exactly one real root — this can be done by calculus. Details
omitted.

(iii)) We may embed Gal(E/Q) into S3 by its action on the three roots in F.

Since P(X) is irreducible, Gal(E/Q) acts transitively; the complex conjuga-

tion permutes the roots of P in E C C, therefore gives rise to a transposition

in Gal(F/Q). Hence Gal(E/Q) = &3.

Alternatively, one many also argue by considering the discriminant of P(X), etc.

2. (15 points) Show that for every n > 1, there exists a field embedding
LZ@(Xl,...,Xn) — C

over Q, where Q(Xy, ..., X,) stands for the field of rational functions in the vari-
ables X1,...,X,,.

& Solution. Using the facts (i) if F/F is an algebraic extension of infinite fields,
then |E| = |F|; (ii) |C| > |Q|, one constructs a sequence of complex numbers
a1, o, ... without nontrivial polynomial relations over Q. The construction goes
recursively as follows.

(a) Choose any transcendental number «;.

(b) Assume that n € Z>; and oy, ..., oy, € C have been chosen so that for every P €
Q[Xy, ..., X,], we have P(a,...,a,) # 0 whenever P # 0. In other words,
there is no nontrivial polynomial relation among ay, . .., a,. Now choose o, 11 €
C that is not algebraic over Q(ay, ..., a,). This is possible since Q(ay, ..., ay)
is countable whereas C is not.

(c) We contend that for any P € Q[Xy,..., X1, Plag,...,a,1) = 0 implies
P = 0. Indeed, assume P # 0 and let Q(X,41) := P(aq,...,an, Xpi1), Q €
Qaq, ..., ap)[Xps1]. If @ = 0 there would be some polynomial relations among
ai, ..., ap (to see this, regard P as a nonzero element of Q[X7, ..., X,][X,11]
and look at its coefficients in the ring Q[Xj, ..., X,]), which is impossible.
However Q(a,.1) = 0 is also impossible by the previous step. Thus P = 0.

Given n, putting ¢(P(Xy,...,X,)) = Play,...,ap) for all P € Q(Xy,...,X,)
defines the required embedding.

3. (20 points) Let R be a ring with unit and let I/ C R be a two-sided ideal whose
elements are all nilpotent. Establish the lifting of idempotents from R/I to R by
the following instructions.
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(a) Let @ € R/I be an idempotent, i.e. a> = a. Suppose that a € R, a — a
under the quotient homomorphism R — R/I, and set b = 1 — a. Show that
ab="ba € I.

(b) For a,b as above and m € Z>1, put

o — Z <2]1;n) aFpPmr,
f= Z <2Z)akb2m—k

m<k<2m
large. Hint: take m > 0 so that (ab)™ = 0.

(c) Under the assumption m > 0, deduce that f? = f (i.e. f € R is an idempo-
tent) and f has image a.

where (“) = #'), Show that e + f =1, ef = 0 whenever m is sufficiently

& Solution. We have ab = a — a® = ba, which lies in I since @ = a2. The equation
e+ f =1 follows from the binomial identity. Since b (resp. a) appears with powers
> m in the expression of e (resp. that of f) and ab = ba, we get ef = 0 whenever

(ab)™ = 0, which holds for m > 0 since ab € I is nilpotent. Finally, f = a™ = a
since ab = 0. Also, f2— f=(f—-1)f =ef =0.

4. (10 points) Let A be an infinite-dimensional simple algebra over a field F. Show
that every nonzero left A-module is infinite-dimensional over F'.
& Solution. For any left A-module M, its annihilator ann(M) is a two-sided ideal.
The map a — [M > m +— am] induces an embedding A/ann(M) < Endp(M) of F-
algebras. When M # {0} we must have ann(M) = {0}. Were M finite-dimensional,
A = A/ann(M) would be finite-dimensional as well. Contradiction.

5. (10 points) Let (V, ) be an absolutely irreducible representation of a finite group

G over a field F' (notation: V is an F-vector space and m : G — Autp(V)).
Denote by Z(G) the center of G. Show that there is a group homomorphism
Wy Z(G) — F*, called the central character of 7, such that m(z) = w.(2) - idy for
all z € Z(G).
& Solution. Observe that (z) : V — V belongs to Endg(V), the latter F-algebra
equals F' as V' is absolutely irreducible. Hence there exists a map z — w,(z) € F*
with m(z) = w,(2)-idy. From 7(21)m(22) = 7(2122) one infers that w, : Z(G) — F*
is a group homomorphism.

6. (15 points) Let H C G be finite groups, g € G and (o, V) be a representation of
H over some field F. Set H9 := g~'Hg and consider the g-twisted representation

o/(-):=0(g-g ") : HY — Autp(V)
on the same space V. Show that there is an isomorphism of induced representations

Ind% (o) = Ind%, (09)
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given by sending f: G =V to f(g-) : G — V.

& Solution. Tt is straightforward to check that f(g -) lies in Ind%,(09), and that
f — f(g -) defines a homomorphism between induced representations. Its inverse
is simply f' — f'(g71 ).

7. (15 points) Fix a prime number p. For every ¢ of the form ¢ = p", n € Z>,
denote by [F, the finite field with ¢ elements; thus F, D F,. Set

mg = eFy: Fg=Fp(a)}.

(i) Show that p" =>_, 7, for all n € Z>,.
(ii) Infer that mm =3, u(d)pd; here pu stands for the Mdbius function:

(d> B (_1)\{prime factors of d}|7 d squarefree,
) = 0, otherwise.

& Solution. As shown in the lecture notes, for every d|n there is exactly one
intermediate field F, ¢ K C Fp» with [K : F,] = d (thus K ~ F,), and all
intermediate fields are so obtained. The first statement follows by the decomposition
into disjoint union

Fpr = | [{0 € Fpn : Fy(e) = Fpu}

dn

=| |[{a €Fp: Fpla) =Fpu}.

dln

The second statement follows immediately by Mébius inversion formula.




