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1. (15 points) Let E be the splitting field of P (X) = X3 −X + 1 ∈ Q[X]; we may
assume E ⊂ C. Determine the Galois group Gal(E/Q).
� Solution. We present one possible approach below.

(i) P (X) is irreducible over Q: this is equivalent to the assertion that P has no
roots in Q. By elementary algebra, it suffices to check that ±1 are not roots.

(ii) P (X) has exactly one real root — this can be done by calculus. Details
omitted.

(iii) We may embed Gal(E/Q) into S3 by its action on the three roots in E.
Since P (X) is irreducible, Gal(E/Q) acts transitively; the complex conjuga-
tion permutes the roots of P in E ⊂ C, therefore gives rise to a transposition
in Gal(E/Q). Hence Gal(E/Q) = S3.

Alternatively, one many also argue by considering the discriminant of P (X), etc.

2. (15 points) Show that for every n ≥ 1, there exists a field embedding

ι : Q(X1, . . . , Xn) ↪→ C

over Q, where Q(X1, . . . , Xn) stands for the field of rational functions in the vari-
ables X1, . . . , Xn.
� Solution. Using the facts (i) if E/F is an algebraic extension of infinite fields,
then |E| = |F |; (ii) |C| > |Q|, one constructs a sequence of complex numbers
α1, α2, . . . without nontrivial polynomial relations over Q. The construction goes
recursively as follows.
(a) Choose any transcendental number α1.
(b) Assume that n ∈ Z≥1 and α1, . . . , αn ∈ C have been chosen so that for every P ∈

Q[X1, . . . , Xn], we have P (α1, . . . , αn) ̸= 0 whenever P ̸= 0. In other words,
there is no nontrivial polynomial relation among α1, . . . , αn. Now choose αn+1 ∈
C that is not algebraic over Q(α1, . . . , αn). This is possible since Q(α1, . . . , αn)
is countable whereas C is not.

(c) We contend that for any P ∈ Q[X1, . . . , Xn+1], P (α1, . . . , αn+1) = 0 implies
P = 0. Indeed, assume P ̸= 0 and let Q(Xn+1) := P (α1, . . . , αn, Xn+1), Q ∈
Q(α1, . . . , αn)[Xn+1]. If Q = 0 there would be some polynomial relations among
α1, . . . , αn (to see this, regard P as a nonzero element of Q[X1, . . . , Xn][Xn+1]
and look at its coefficients in the ring Q[X1, . . . , Xn]), which is impossible.
However Q(αn+1) = 0 is also impossible by the previous step. Thus P = 0.

Given n, putting ι(P (X1, . . . , Xn)) = P (α1, . . . , αn) for all P ∈ Q(X1, . . . , Xn)
defines the required embedding.

3. (20 points) Let R be a ring with unit and let I ⊂ R be a two-sided ideal whose
elements are all nilpotent. Establish the lifting of idempotents from R/I to R by
the following instructions.
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(a) Let ā ∈ R/I be an idempotent, i.e. ā2 = ā. Suppose that a ∈ R, a 7→ ā
under the quotient homomorphism R → R/I, and set b = 1 − a. Show that
ab = ba ∈ I.

(b) For a, b as above and m ∈ Z≥1, put

e =
∑

0≤k≤m

(
2m

k

)
akb2m−k,

f =
∑

m<k≤2m

(
2m

k

)
akb2m−k

where
(
u
v

)
:= u!

v!(u−v)!
. Show that e + f = 1, ef = 0 whenever m is sufficiently

large. Hint: take m ≫ 0 so that (ab)m = 0.
(c) Under the assumption m ≫ 0, deduce that f 2 = f (i.e. f ∈ R is an idempo-

tent) and f has image ā.

� Solution. We have ab = a− a2 = ba, which lies in I since ā = ā2. The equation
e+ f = 1 follows from the binomial identity. Since b (resp. a) appears with powers
≥ m in the expression of e (resp. that of f) and ab = ba, we get ef = 0 whenever
(ab)m = 0, which holds for m ≫ 0 since ab ∈ I is nilpotent. Finally, f̄ = ām = ā
since āb̄ = 0. Also, f 2 − f = (f − 1)f = ef = 0.

4. (10 points) Let A be an infinite-dimensional simple algebra over a field F . Show
that every nonzero left A-module is infinite-dimensional over F .
� Solution. For any left A-module M , its annihilator ann(M) is a two-sided ideal.
The map a 7→ [M ∋ m 7→ am] induces an embedding A/ann(M) ↪→ EndF (M) of F -
algebras. When M ̸= {0} we must have ann(M) = {0}. Were M finite-dimensional,
A = A/ann(M) would be finite-dimensional as well. Contradiction.

5. (10 points) Let (V, π) be an absolutely irreducible representation of a finite group
G over a field F (notation: V is an F -vector space and π : G → AutF (V )).
Denote by Z(G) the center of G. Show that there is a group homomorphism
ωπ : Z(G) → F×, called the central character of π, such that π(z) = ωπ(z) · idV for
all z ∈ Z(G).
� Solution. Observe that π(z) : V → V belongs to EndG(V ), the latter F -algebra
equals F as V is absolutely irreducible. Hence there exists a map z 7→ ωπ(z) ∈ F×

with π(z) = ωπ(z) · idV . From π(z1)π(z2) = π(z1z2) one infers that ωπ : Z(G) → F×

is a group homomorphism.

6. (15 points) Let H ⊂ G be finite groups, g ∈ G and (σ, V ) be a representation of
H over some field F . Set Hg := g−1Hg and consider the g-twisted representation

σg(·) := σ(g · g−1) : Hg → AutF (V )

on the same space V . Show that there is an isomorphism of induced representations

IndG
H(σ)

∼−→ IndG
Hg(σg)

第 2 页 共 3 页



given by sending f : G → V to f(g ·) : G → V .
� Solution. It is straightforward to check that f(g ·) lies in IndG

Hg(σg), and that
f 7→ f(g ·) defines a homomorphism between induced representations. Its inverse
is simply f ′ 7→ f ′(g−1 ·).

7. (15 points) Fix a prime number p. For every q of the form q = pn, n ∈ Z≥1,
denote by Fq the finite field with q elements; thus Fq ⊃ Fp. Set

πq := |{α ∈ Fq : Fq = Fp(α)}| .

(i) Show that pn =
∑

d|n πpd for all n ∈ Z≥1.
(ii) Infer that πpn =

∑
d|n µ(d)p

n
d ; here µ stands for the Möbius function:

µ(d) =

{
(−1)|{prime factors of d}|, d squarefree,
0, otherwise.

� Solution. As shown in the lecture notes, for every d|n there is exactly one
intermediate field Fp ⊂ K ⊂ Fpn with [K : Fp] = d (thus K ≃ Fpd), and all
intermediate fields are so obtained. The first statement follows by the decomposition
into disjoint union

Fpn =
⊔
d|n

{
α ∈ Fpn : Fp(α) = Fpd

}
=

⊔
d|n

{
α ∈ Fpd : Fp(α) = Fpd

}
.

The second statement follows immediately by Möbius inversion formula.

第 3 页 共 3 页


