代数学 II 期末试题参考解答

2014 年 1 月 16 日，考试时间 13：30－15：10

＊请用中文或英文答题．
\star 一切符号与定义以讲义为准。
＊论证中可使用讲义业已证明或预设的结果．
＊本卷总分为 100 分．

Note：Unless otherwise specified，all rings are assumed to be nonzero and have a unit element 1. All representations are assumed to be finite－dimensional．

The solutions below are neither unique nor the best ones．
1．（ $\mathbf{1 0}$ points）Let R be a simple ring．Show that its center $Z(R)$ is a field．
Solution．Let $z \in Z(R), z \neq 0$ ．The set $R z=z R$ is a two－sided ideal of R containing $z \neq 0$ ． Hence $R z=z R=R$ by the simplicity of R ．Therefore there exist $v, w \in R$ with $v z=1=z w$ ，i．e． $z \in R^{\times}, v=w=z^{-1}$ ．It follows that $z^{-1} \in Z(R)$ as well．Hence $Z(R)$ is a field．

2．（ $\mathbf{1 0}$ points）Let A be a finite－dimensional algebra over a field F ．Denote by $\operatorname{rad}(A)$ its Jacobson radical．For every left A－module M ，define its socle as the submodule

$$
\operatorname{soc}(M):=\sum_{\substack{N \subset M \\ \text { simple submodule }}} N .
$$

Show that $\operatorname{soc}(M)=\{m \in M: \operatorname{rad}(A) \cdot m=0\}$ ．
Solution．The inclusion \subset follows from the fact that for every simple left A－module M ，we have $\operatorname{rad}(A) M=\{0\}$ ．To prove \supset ，note that $A / \operatorname{rad}(A)$ is a semisimple ring since it is finite－dimensional， hence left artinian under our assumption．Thus $\{m \in M: \operatorname{rad}(A) \cdot m=0\}$ decomposes into a sum of simple left $A / \operatorname{rad}(A)$－modules and is contained in $\operatorname{soc}(M)$ ．

3．（ $\mathbf{1 0}$ points）Let F be a finite field．Use Wedderburn＇s little theorem on finite division rings to show the Brauer group $\operatorname{Br}(F)$ is trivial．
Solution．Wedderburn＇s little theorem says that finite division rings are fields．Let A be a central simple F－algebra．We may write $A \simeq M_{n}(D)$ for some $n \in \mathbb{Z}_{\geq 1}$ and D a central division F－algebra． Since D is a field，it must equal F ．Hence $\operatorname{Br}(F)$ is trivial by its definition．

4．（ $\mathbf{1 5}$ points）Let R and S be rings．Assume that R and S are Morita equivalent．Show that R is finite if and only if S is finite．
Solution．It can be proved using Morita＇s theorems．Here we give a direct proof．Claim：a ring R is finite if and only if for every finitely generated left module P ，the endomorphism ring $\operatorname{End}\left({ }_{R} P\right)$ is finite．The latter is a property of the category R－Mod（see Lecture 4，Definition 1．3），hence is preserved under Morita equivalence．In the hint we suggested a version for finitely generated projective modules，which is slightly more complicated．
Let us prove the claim．Right translation gives rise to a ring isomorphism $R \xrightarrow{\sim} \operatorname{End}\left({ }_{R} R\right)$ ．Since ${ }_{R} R$ is finitely generated，the ring R is finite．Conversely，assume R finite and let ${ }_{R} P$ be finitely generated．Then P is a finite module，hence the finiteness of $\operatorname{End}\left({ }_{R} P\right)$ ．
5. (15 points) For every ring R, let $[R, R]$ be the subgroup of the additive group $(R,+)$ generated by elements of the form $x y-y x(x, y \in R)$. Let $\bar{R}:=R /[R, R]$ be the quotient group. Show that if two rings R and S are Morita equivalent, then $\bar{R} \simeq \bar{S}$ as abelian groups.
Solution. By Morita theory for left modules, there exists a Morita context $\left(R,{ }_{R} P_{S},{ }_{S} Q_{R}, S ; \alpha, \beta\right)$ with $\alpha: P \otimes_{S} Q \xrightarrow{\sim} R$ as (R, R)-bimodules, and $\beta: Q \otimes_{R} P \xrightarrow{\sim} S$ as (S, S)-bimodules. We shall write $\alpha(p \otimes q)=p q$ and $\beta(q \otimes p)=q p$ as usual. From the maps

$$
R \longleftarrow \underset{\alpha}{\sim} P \otimes_{S} Q \longrightarrow S /[S, S]
$$

$$
p q \longleftrightarrow p \otimes q \longmapsto \overline{q p}=\overline{\beta(q \otimes p)}
$$

one obtains $\Phi: R \rightarrow \bar{S}$ characterized by $p q \mapsto \overline{q p}$; note that the right hand side is well-defined only after modulo $[S, S]$. For any $r \in R$ we have $\Phi((r p) q)=\overline{q r p}=\Phi(p(q r))$, hence Φ induces a group homomorphism $\bar{\Phi}: \bar{R} \rightarrow \bar{S}$ characterized by $\overline{p q} \mapsto \overline{q p}$. Likewise, the maps

$$
S<\underset{\beta}{\sim} Q \otimes_{R} P \longrightarrow R /[R, R]
$$

$$
q p \longleftrightarrow q \otimes p \longmapsto \overline{q p}=\overline{\alpha(p \otimes q)}
$$

yield a group homomorphism $\bar{\Psi}: \bar{S} \rightarrow \bar{R}$ characterized by $\overline{q p} \mapsto \overline{p q}$. They are mutually inverse, hence $\bar{R} \simeq \bar{S}$.
6. (15 points) Describe the conjugacy classes c_{1}, c_{2}, \ldots of the symmetric group \mathfrak{S}_{3} by prescribing representatives. Construct all the irreducible representations V_{1}, V_{2}, \ldots of \mathfrak{S}_{3} over \mathbb{C} and compile the character table in the following format.

	c_{1}	c_{2}	\cdots
V_{1}	$\chi_{V_{1}}\left(c_{1}\right)$	$\chi_{V_{1}}\left(c_{2}\right)$	\cdots
V_{2}	$\chi_{V_{2}}\left(c_{1}\right)$	$\chi_{V_{2}}\left(c_{2}\right)$	\cdots
\vdots	\vdots	\vdots	\ddots

Solution. There are three conjugacy classes, say with representatives $1,(12),(123)$ (as cycles). Since $\left|\mathfrak{S}_{3}\right|=3!=2^{2}+1+1$, there are exactly three irreducible representations over $\mathbb{C}: V_{1}:=\mathbb{1}, V_{2}:=\operatorname{sgn}$ and a 2-dimensional irreducible representation V_{3}. As $\chi_{V_{3}}(1)=\operatorname{dim} V_{3}=2$, the character table takes the form

	1	(12)	(123)
$\mathbb{1}$	1	1	1
sgn	1	-1	1
V_{3}	2		

We offer two constructions for V_{3}, both are overkill somehow.
(i) Since \mathfrak{S}_{3} is clearly supersolvable, the only subgroup of index 2 being the alternating subgroup $\mathfrak{A}_{3}=\langle(123)\rangle \simeq \mathbb{Z} / 3 \mathbb{Z}$, we must have $V_{3} \simeq \operatorname{ind}_{\mathfrak{A}_{3}}^{\mathfrak{G}_{3}}(\xi)$ for some 1-dimensional representation $\xi: \mathfrak{A}_{3} \rightarrow \mathbb{C}^{\times}$. If $\xi=\mathbb{1}$ then $\operatorname{ind}_{\mathfrak{A}_{3}}^{\mathfrak{G}_{3}}(\xi)$ contains $\mathbb{1}$ as a subrepresentation, hence reducible. Thus the remaining candidates are $\xi((123))=e^{ \pm 2 \pi i / 3}$. They are conjugate under \mathfrak{S}_{3} thus give the same induced representation V_{3}. The character values can be calculated by the induced character formula (Lecture 6, Proposition 4.1): $\chi_{V_{3}}((12))=0$ since (12) $\notin \mathfrak{A}_{3}$, whilst $\chi_{V_{3}}((123))=e^{2 \pi i / 3}+e^{-2 \pi i / 3}=-1$.
(ii) Another way is via Specht modules. The Young diagram corresponding to V_{3} is $\lambda=$
 Define the following tableaux of shape λ :

$$
t_{1}=\begin{array}{|l|l}
\hline 2 & 3 \\
\hline 1 &
\end{array}, \quad t_{2}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 &
\end{array}, \quad t_{3}= .
$$

Then the associated tabloids

$$
\left\{t_{1}\right\}=\frac{\overline{23}}{\overline{1}}, \quad\left\{t_{2}\right\}=\overline{\frac{\overline{1} 3}{2}}, \quad\left\{t_{3}\right\}=\overline{\overline{1} 2} .
$$

are precisely all the tabloids of shape λ; they form a basis for the permutation module $M^{\lambda} \simeq$ $\operatorname{ind}{\mathfrak{\mathfrak { S } _ { 2 }}}_{2}^{\mathfrak{S}_{3}}(\mathbb{1})$. A mental calculation of polytabloids leads to $e_{t_{1}}=\left\{t_{1}\right\}-\left\{t_{2}\right\}, e_{t_{2}}=\left\{t_{2}\right\}-\left\{t_{1}\right\}$, $e_{t_{3}}=\left\{t_{3}\right\}-\left\{t_{1}\right\}$. Hence the Specht module is

$$
V_{3} \simeq S^{\lambda}=\left\{\sum_{i=1}^{3} c_{i}\left\{t_{i}\right\}: c_{1}+c_{2}+c_{3}=0\right\}, \quad M^{\lambda} / S^{\lambda} \simeq \mathbb{1} .
$$

One may calculate $\chi_{V_{3}}(\cdot)=\chi_{M^{\lambda}}(\cdot)-1$ by the induced character formula applied to M^{λ}.
In fact there is no need to calculate $\chi_{V_{3}}$ by hand. Since the columns of the character table satisfy orthogonality relations (Lecture 5, Theorem 4.5), the missing entries $\chi_{V_{3}}((12))$ and $\chi_{V_{3}}((123))$ are immediately determined. All in all, we have

	1	(12)	(123)
$\mathbb{1}$	1	1	1
sgn	1	-1	1
V_{3}	2	0	-1

7. (10 points) Let (V, π) be an absolutely irreducible representation of a finite group G over a field F. Show that there exists a group homomorphism $\omega_{\pi}: Z(G) \rightarrow F^{\times}$such that $\pi(z) v=\omega_{\pi}(z) v$ for each $v \in V$ and $z \in Z(G)$. Here $Z(G)$ denotes the center of G.
Solution. For every $z \in Z(G)$, the F-linear isomorphism $\pi(z): V \rightarrow V$ satisfies $\pi(z) \pi(g)=\pi(g) \pi(z)$ for all $g \in G$, therefore $\pi(z) \in \operatorname{Hom}_{G}(V, V)=F \cdot \mathrm{id}$, as (V, π) is absolutely irreducible. We obtain the required group homomorphism $\omega_{\pi}: Z(G) \rightarrow F^{\times}$.
8. (15 points) Let $(V, \sigma),(W, \pi)$ be irreducible representations of a finite group G over a field F. Assume there exists an F-bilinear mapping $B: V \times W \rightarrow F$ such that (i) B is G-invariant in the sense that $\forall g \in G, B(\sigma(g) \cdot, \pi(g) \cdot)=B(\cdot, \cdot)$, and (ii) B is not identically zero. Show that V is isomorphic to the contragredient W^{\vee} of W as representations.
Solution. Define an F-linear map $b: V \rightarrow W^{\vee}$ by sending $v \in V$ to $B(v, \cdot) \in W^{\vee}$. It is nonzero since B is not identically zero. It is a homomorphism between representations of G. Indeed,

$$
b(\sigma(g) v)=B(\sigma(g) v, \cdot)=B\left(v, \pi(g)^{-1} \cdot\right)=\check{\pi}(g)(B(v, \cdot))
$$

for all $g \in G$, where $\check{\pi}$ denotes the contragredient representation of π. Since V, W are irreducible, b is an isomorphism of representations. Here we used the easy property W irreducible $\Leftrightarrow W^{\vee}$ irreducible: the representations are finite-dimensional by assumption.

