代数学 II 期末试题参考解答

2014年1月16日,考试时间13:30-15:10

- * 请用中文或英文答题.
- * 一切符号与定义以讲义为准.
- * 论证中可使用讲义业已证明或预设的结果.
- * 本卷总分为 100 分.

NOTE: Unless otherwise specified, all rings are assumed to be nonzero and have a unit element 1. All representations are assumed to be finite-dimensional.

The solutions below are neither unique nor the best ones.

1. (10 points) Let R be a simple ring. Show that its center Z(R) is a field.

Solution. Let $z \in Z(R)$, $z \neq 0$. The set Rz = zR is a two-sided ideal of R containing $z \neq 0$. Hence Rz = zR = R by the simplicity of R. Therefore there exist $v, w \in R$ with vz = 1 = zw, i.e. $z \in R^{\times}, v = w = z^{-1}$. It follows that $z^{-1} \in Z(R)$ as well. Hence Z(R) is a field.

2. (10 points) Let A be a finite-dimensional algebra over a field F. Denote by rad(A) its Jacobson radical. For every left A-module M, define its socle as the submodule

$$\operatorname{soc}(M) := \sum_{\substack{N \subset M \\ \text{simple submodule}}} N$$

Show that $\operatorname{soc}(M) = \{m \in M : \operatorname{rad}(A) \cdot m = 0\}.$

Solution. The inclusion \subset follows from the fact that for every simple left A-module M, we have $\operatorname{rad}(A)M = \{0\}$. To prove \supset , note that $A/\operatorname{rad}(A)$ is a semisimple ring since it is finite-dimensional, hence left artinian under our assumption. Thus $\{m \in M : \operatorname{rad}(A) \cdot m = 0\}$ decomposes into a sum of simple left $A/\operatorname{rad}(A)$ -modules and is contained in $\operatorname{soc}(M)$.

3. (10 points) Let F be a finite field. Use Wedderburn's little theorem on finite division rings to show the Brauer group Br(F) is trivial.

Solution. Wedderburn's little theorem says that finite division rings are fields. Let A be a central simple F-algebra. We may write $A \simeq M_n(D)$ for some $n \in \mathbb{Z}_{\geq 1}$ and D a central division F-algebra. Since D is a field, it must equal F. Hence Br(F) is trivial by its definition.

4. (15 points) Let R and S be rings. Assume that R and S are Morita equivalent. Show that R is finite if and only if S is finite.

Solution. It can be proved using Morita's theorems. Here we give a direct proof. Claim: a ring R is finite if and only if for every finitely generated left module P, the endomorphism ring $\text{End}(_RP)$ is finite. The latter is a property of the category R-Mod (see Lecture 4, Definition 1.3), hence is preserved under Morita equivalence. In the hint we suggested a version for finitely generated projective modules, which is slightly more complicated.

Let us prove the claim. Right translation gives rise to a ring isomorphism $R \xrightarrow{\sim} \text{End}(_RR)$. Since $_RR$ is finitely generated, the ring R is finite. Conversely, assume R finite and let $_RP$ be finitely generated. Then P is a finite module, hence the finiteness of $\text{End}(_RP)$.

5. (15 points) For every ring R, let [R, R] be the subgroup of the additive group (R, +) generated by elements of the form xy - yx $(x, y \in R)$. Let $\overline{R} := R/[R, R]$ be the quotient group. Show that if two rings R and S are Morita equivalent, then $\overline{R} \simeq \overline{S}$ as abelian groups.

Solution. By Morita theory for left modules, there exists a Morita context $(R, _RP_S, _SQ_R, S; \alpha, \beta)$ with $\alpha : P \otimes_S Q \xrightarrow{\sim} R$ as (R, R)-bimodules, and $\beta : Q \otimes_R P \xrightarrow{\sim} S$ as (S, S)-bimodules. We shall write $\alpha(p \otimes q) = pq$ and $\beta(q \otimes p) = qp$ as usual. From the maps

$$R \xleftarrow{\sim}_{\alpha} P \otimes_{S} Q \longrightarrow S/[S,S]$$

$$pq \xleftarrow{\rightarrow} p \otimes q \longmapsto \overline{qp} = \overline{\beta(q \otimes p)}$$

one obtains $\Phi: R \to \overline{S}$ characterized by $pq \mapsto \overline{qp}$; note that the right hand side is well-defined only after modulo [S, S]. For any $r \in R$ we have $\Phi((rp)q) = \overline{qrp} = \Phi(p(qr))$, hence Φ induces a group homomorphism $\overline{\Phi}: \overline{R} \to \overline{S}$ characterized by $\overline{pq} \mapsto \overline{qp}$. Likewise, the maps

$$S \xleftarrow{\sim}_{\beta} Q \otimes_R P \longrightarrow R/[R, R]$$
$$qp \xleftarrow{\sim} q \otimes p \longmapsto \overline{qp} = \overline{\alpha(p \otimes q)}$$

yield a group homomorphism $\overline{\Psi}: \overline{S} \to \overline{R}$ characterized by $\overline{qp} \mapsto \overline{pq}$. They are mutually inverse, hence $\overline{R} \simeq \overline{S}$.

6. (15 points) Describe the conjugacy classes c_1, c_2, \ldots of the symmetric group \mathfrak{S}_3 by prescribing representatives. Construct all the irreducible representations V_1, V_2, \ldots of \mathfrak{S}_3 over \mathbb{C} and compile the character table in the following format.

	c_1	c_2	
V_1	$\chi_{V_1}(c_1)$	$\chi_{V_1}(c_2)$	
V_2	$\chi_{V_2}(c_1)$	$\chi_{V_2}(c_2)$	
:	•	•	·

Solution. There are three conjugacy classes, say with representatives 1, (12), (123) (as cycles). Since $|\mathfrak{S}_3| = 3! = 2^2 + 1 + 1$, there are exactly three irreducible representations over \mathbb{C} : $V_1 := \mathbb{1}$, $V_2 := \text{sgn}$ and a 2-dimensional irreducible representation V_3 . As $\chi_{V_3}(1) = \dim V_3 = 2$, the character table takes the form

	1	(12)	(123)
1	1	1	1
sgn	1	-1	1
V_3	2		

We offer two constructions for V_3 , both are overkill somehow.

(i) Since \mathfrak{S}_3 is clearly supersolvable, the only subgroup of index 2 being the alternating subgroup $\mathfrak{A}_3 = \langle (123) \rangle \simeq \mathbb{Z}/3\mathbb{Z}$, we must have $V_3 \simeq \operatorname{ind}_{\mathfrak{A}_3}^{\mathfrak{S}_3}(\xi)$ for some 1-dimensional representation $\xi : \mathfrak{A}_3 \to \mathbb{C}^{\times}$. If $\xi = 1$ then $\operatorname{ind}_{\mathfrak{A}_3}^{\mathfrak{S}_3}(\xi)$ contains 1 as a subrepresentation, hence reducible. Thus the remaining candidates are $\xi((123)) = e^{\pm 2\pi i/3}$. They are conjugate under \mathfrak{S}_3 thus give the same induced representation V_3 . The character values can be calculated by the induced character formula (Lecture 6, Proposition 4.1): $\chi_{V_3}((12)) = 0$ since $(12) \notin \mathfrak{A}_3$, whilst $\chi_{V_3}((123)) = e^{2\pi i/3} + e^{-2\pi i/3} = -1$.

(ii) Another way is via Specht modules. The Young diagram corresponding to V_3 is $\lambda =$ Define the following tableaux of shape λ :

$$t_1 = \boxed{\begin{array}{ccc} 2 & 3 \\ 1 & \end{array}}, \quad t_2 = \boxed{\begin{array}{ccc} 1 & 3 \\ 2 & \end{array}}, \quad t_3 = \boxed{\begin{array}{ccc} 1 & 2 \\ 3 & \end{array}}$$

Then the associated tabloids

$$\{t_1\} = \frac{\boxed{2 \quad 3}}{1}, \quad \{t_2\} = \frac{\boxed{1 \quad 3}}{2}, \quad \{t_3\} = \frac{\boxed{1 \quad 2}}{3}$$

are precisely all the tabloids of shape λ ; they form a basis for the permutation module $M^{\lambda} \simeq \operatorname{ind}_{\mathfrak{S}_2}^{\mathfrak{S}_3}(\mathbb{1})$. A mental calculation of polytabloids leads to $e_{t_1} = \{t_1\} - \{t_2\}, e_{t_2} = \{t_2\} - \{t_1\}, e_{t_3} = \{t_3\} - \{t_1\}$. Hence the Specht module is

$$V_3 \simeq S^{\lambda} = \left\{ \sum_{i=1}^3 c_i \{ t_i \} : c_1 + c_2 + c_3 = 0 \right\}, \quad M^{\lambda} / S^{\lambda} \simeq \mathbb{1}$$

One may calculate $\chi_{V_3}(\cdot) = \chi_{M^{\lambda}}(\cdot) - 1$ by the induced character formula applied to M^{λ} . In fact there is no need to calculate χ_{V_3} by hand. Since the columns of the character table satisfy

In fact there is no need to calculate χ_{V_3} by hand. Since the columns of the character table satisfy orthogonality relations (Lecture 5, Theorem 4.5), the missing entries $\chi_{V_3}((12))$ and $\chi_{V_3}((123))$ are immediately determined. All in all, we have

	1	(12)	(123)
1	1	1	1
sgn	1	-1	1
V_3	2	0	-1

7. (10 points) Let (V, π) be an absolutely irreducible representation of a finite group G over a field F. Show that there exists a group homomorphism $\omega_{\pi} : Z(G) \to F^{\times}$ such that $\pi(z)v = \omega_{\pi}(z)v$ for each $v \in V$ and $z \in Z(G)$. Here Z(G) denotes the center of G.

Solution. For every $z \in Z(G)$, the *F*-linear isomorphism $\pi(z) : V \to V$ satisfies $\pi(z)\pi(g) = \pi(g)\pi(z)$ for all $g \in G$, therefore $\pi(z) \in \text{Hom}_G(V, V) = F \cdot \text{id}$, as (V, π) is absolutely irreducible. We obtain the required group homomorphism $\omega_{\pi} : Z(G) \to F^{\times}$.

8. (15 points) Let $(V, \sigma), (W, \pi)$ be irreducible representations of a finite group G over a field F. Assume there exists an F-bilinear mapping $B: V \times W \to F$ such that (i) B is G-invariant in the sense that $\forall g \in G, B(\sigma(g), \pi(g)) = B(\cdot, \cdot)$, and (ii) B is not identically zero. Show that V is isomorphic to the contragredient W^{\vee} of W as representations.

Solution. Define an F-linear map $b: V \to W^{\vee}$ by sending $v \in V$ to $B(v, \cdot) \in W^{\vee}$. It is nonzero since B is not identically zero. It is a homomorphism between representations of G. Indeed,

$$b(\sigma(g)v) = B(\sigma(g)v, \cdot) = B(v, \pi(g)^{-1} \cdot) = \check{\pi}(g) \left(B(v, \cdot) \right)$$

for all $g \in G$, where $\check{\pi}$ denotes the contragredient representation of π . Since V, W are irreducible, b is an isomorphism of representations. Here we used the easy property W irreducible $\Leftrightarrow W^{\vee}$ irreducible: the representations are finite-dimensional by assumption.