
代数学 II 期末试题参考解答

2014 年 1 月 16 日, 考试时间 13:30-15:10

⋆ 请用中文或英文答题.
⋆ 一切符号与定义以讲义为准.
⋆ 论证中可使用讲义业已证明或预设的结果.
⋆ 本卷总分为 100 分.

Note: Unless otherwise specified, all rings are assumed to be nonzero and have a unit element 1.
All representations are assumed to be finite-dimensional.

The solutions below are neither unique nor the best ones.

1. (10 points) Let R be a simple ring. Show that its center Z(R) is a field.
Solution. Let z ∈ Z(R), z ̸= 0. The set Rz = zR is a two-sided ideal of R containing z ̸= 0.
Hence Rz = zR = R by the simplicity of R. Therefore there exist v, w ∈ R with vz = 1 = zw, i.e.
z ∈ R×, v = w = z−1. It follows that z−1 ∈ Z(R) as well. Hence Z(R) is a field.

2. (10 points) Let A be a finite-dimensional algebra over a field F . Denote by rad(A) its Jacobson
radical. For every left A-module M , define its socle as the submodule

soc(M) :=
∑

N⊂M
simple submodule

N.

Show that soc(M) = {m ∈ M : rad(A) ·m = 0}.
Solution. The inclusion ⊂ follows from the fact that for every simple left A-module M , we have
rad(A)M = {0}. To prove ⊃, note that A/rad(A) is a semisimple ring since it is finite-dimensional,
hence left artinian under our assumption. Thus {m ∈ M : rad(A) ·m = 0} decomposes into a sum
of simple left A/rad(A)-modules and is contained in soc(M).

3. (10 points) Let F be a finite field. Use Wedderburn’s little theorem on finite division rings to
show the Brauer group Br(F ) is trivial.
Solution. Wedderburn’s little theorem says that finite division rings are fields. Let A be a central
simple F -algebra. We may write A ≃ Mn(D) for some n ∈ Z≥1 and D a central division F -algebra.
Since D is a field, it must equal F . Hence Br(F ) is trivial by its definition.

4. (15 points) Let R and S be rings. Assume that R and S are Morita equivalent. Show that R is
finite if and only if S is finite.
Solution. It can be proved using Morita’s theorems. Here we give a direct proof. Claim: a ring R
is finite if and only if for every finitely generated left module P , the endomorphism ring End(RP )
is finite. The latter is a property of the category R-Mod (see Lecture 4, Definition 1.3), hence
is preserved under Morita equivalence. In the hint we suggested a version for finitely generated
projective modules, which is slightly more complicated.
Let us prove the claim. Right translation gives rise to a ring isomorphism R

∼→ End(RR). Since
RR is finitely generated, the ring R is finite. Conversely, assume R finite and let RP be finitely
generated. Then P is a finite module, hence the finiteness of End(RP ).

1



5. (15 points) For every ring R, let [R,R] be the subgroup of the additive group (R,+) generated
by elements of the form xy − yx (x, y ∈ R). Let R := R/[R,R] be the quotient group. Show that
if two rings R and S are Morita equivalent, then R ≃ S as abelian groups.
Solution. By Morita theory for left modules, there exists a Morita context (R,RPS , SQR, S;α, β)
with α : P ⊗S Q

∼→ R as (R,R)-bimodules, and β : Q ⊗R P
∼→ S as (S, S)-bimodules. We shall

write α(p⊗ q) = pq and β(q ⊗ p) = qp as usual. From the maps

R P ⊗S Q
∼
α

oo // S/[S, S]

pq p⊗ q
�oo � // qp = β(q ⊗ p)

one obtains Φ : R → S characterized by pq 7→ qp; note that the right hand side is well-defined only
after modulo [S, S]. For any r ∈ R we have Φ((rp)q) = qrp = Φ(p(qr)), hence Φ induces a group
homomorphism Φ̄ : R → S characterized by pq 7→ qp. Likewise, the maps

S Q⊗R P
∼
β

oo // R/[R,R]

qp q ⊗ p�oo � // qp = α(p⊗ q)

yield a group homomorphism Ψ̄ : S → R characterized by qp 7→ pq. They are mutually inverse,
hence R ≃ S.

6. (15 points) Describe the conjugacy classes c1, c2, . . . of the symmetric group S3 by prescribing
representatives. Construct all the irreducible representations V1, V2, . . . of S3 over C and compile
the character table in the following format.

c1 c2 · · ·

V1 χV1(c1) χV1(c2) · · ·

V2 χV2(c1) χV2(c2) · · ·
...

...
... . . .

Solution. There are three conjugacy classes, say with representatives 1, (12), (123) (as cycles). Since
|S3| = 3! = 22+1+1, there are exactly three irreducible representations over C: V1 := 1, V2 := sgn
and a 2-dimensional irreducible representation V3. As χV3(1) = dimV3 = 2, the character table
takes the form

1 (12) (123)

1 1 1 1

sgn 1 −1 1

V3 2

We offer two constructions for V3, both are overkill somehow.
(i) Since S3 is clearly supersolvable, the only subgroup of index 2 being the alternating subgroup

A3 = ⟨(123)⟩ ≃ Z/3Z, we must have V3 ≃ indS3

A3
(ξ) for some 1-dimensional representation

ξ : A3 → C×. If ξ = 1 then indS3

A3
(ξ) contains 1 as a subrepresentation, hence reducible.

Thus the remaining candidates are ξ((123)) = e±2πi/3. They are conjugate under S3 thus
give the same induced representation V3. The character values can be calculated by the
induced character formula (Lecture 6, Proposition 4.1): χV3((12)) = 0 since (12) /∈ A3, whilst
χV3((123)) = e2πi/3 + e−2πi/3 = −1.
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(ii) Another way is via Specht modules. The Young diagram corresponding to V3 is λ = .

Define the following tableaux of shape λ:

t1 =
2 3

1
, t2 =

1 3

2
, t3 =

1 2

3
.

Then the associated tabloids

{t1} =
2 3

1
, {t2} =

1 3

2
, {t3} =

1 2

3
.

are precisely all the tabloids of shape λ; they form a basis for the permutation module Mλ ≃
indS3

S2
(1). A mental calculation of polytabloids leads to et1 = {t1} − {t2}, et2 = {t2} − {t1},

et3 = {t3} − {t1}. Hence the Specht module is

V3 ≃ Sλ =

{
3∑

i=1

ci{ti} : c1 + c2 + c3 = 0

}
, Mλ/Sλ ≃ 1.

One may calculate χV3(·) = χMλ(·)− 1 by the induced character formula applied to Mλ.
In fact there is no need to calculate χV3 by hand. Since the columns of the character table satisfy
orthogonality relations (Lecture 5, Theorem 4.5), the missing entries χV3((12)) and χV3((123)) are
immediately determined. All in all, we have

1 (12) (123)

1 1 1 1

sgn 1 −1 1

V3 2 0 −1

.

7. (10 points) Let (V, π) be an absolutely irreducible representation of a finite group G over a field
F . Show that there exists a group homomorphism ωπ : Z(G) → F× such that π(z)v = ωπ(z)v for
each v ∈ V and z ∈ Z(G). Here Z(G) denotes the center of G.
Solution. For every z ∈ Z(G), the F -linear isomorphism π(z) : V → V satisfies π(z)π(g) = π(g)π(z)
for all g ∈ G, therefore π(z) ∈ HomG(V, V ) = F · id, as (V, π) is absolutely irreducible. We obtain
the required group homomorphism ωπ : Z(G) → F×.

8. (15 points) Let (V, σ), (W,π) be irreducible representations of a finite group G over a field F .
Assume there exists an F -bilinear mapping B : V × W → F such that (i) B is G-invariant in
the sense that ∀g ∈ G, B(σ(g)·, π(g)·) = B(·, ·), and (ii) B is not identically zero. Show that V is
isomorphic to the contragredient W∨ of W as representations.
Solution. Define an F -linear map b : V → W∨ by sending v ∈ V to B(v, ·) ∈ W∨. It is nonzero
since B is not identically zero. It is a homomorphism between representations of G. Indeed,

b(σ(g)v) = B(σ(g)v, ·) = B(v, π(g)−1·) = π̌(g) (B(v, ·))

for all g ∈ G, where π̌ denotes the contragredient representation of π. Since V , W are irreducible,
b is an isomorphism of representations. Here we used the easy property W irreducible ⇔ W∨

irreducible: the representations are finite-dimensional by assumption.
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