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NoTE: Unless otherwise specified, all rings are assumed to be nonzero and have a unit element 1.
All representations are assumed to be finite-dimensional.
The solutions below are neither unique nor the best ones.

1. (10 points) Let R be a simple ring. Show that its center Z(R) is a field.

Solution. Let z € Z(R), z # 0. The set Rz = zR is a two-sided ideal of R containing z # 0.
Hence Rz = zR = R by the simplicity of R. Therefore there exist v,w € R with vz =1 = zw, i.e.
z€ R, v=w=z"1. It follows that 2=! € Z(R) as well. Hence Z(R) is a field.

2. (10 points) Let A be a finite-dimensional algebra over a field F. Denote by rad(A) its Jacobson
radical. For every left A-module M, define its socle as the submodule

soc(M) = Z N.

NCM
simple submodule

Show that soc(M) = {m € M :rad(4) - m = 0}.

Solution. The inclusion C follows from the fact that for every simple left A-module M, we have
rad(A)M = {0}. To prove D, note that A/rad(A) is a semisimple ring since it is finite-dimensional,
hence left artinian under our assumption. Thus {m € M : rad(A) - m = 0} decomposes into a sum
of simple left A/rad(A)-modules and is contained in soc(M).

3. (10 points) Let F' be a finite field. Use Wedderburn’s little theorem on finite division rings to
show the Brauer group Br(F) is trivial.

Solution. Wedderburn’s little theorem says that finite division rings are fields. Let A be a central
simple F-algebra. We may write A ~ M, (D) for some n € Z>; and D a central division F-algebra.
Since D is a field, it must equal F. Hence Br(F') is trivial by its definition.

4. (15 points) Let R and S be rings. Assume that R and S are Morita equivalent. Show that R is
finite if and only if S is finite.

Solution. It can be proved using Morita’s theorems. Here we give a direct proof. Claim: a ring R
is finite if and only if for every finitely generated left module P, the endomorphism ring End(zP)
is finite. The latter is a property of the category R-Mod (see Lecture 4, Definition 1.3), hence
is preserved under Morita equivalence. In the hint we suggested a version for finitely generated
projective modules, which is slightly more complicated.

Let us prove the claim. Right translation gives rise to a ring isomorphism R = End(gR). Since
rR is finitely generated, the ring R is finite. Conversely, assume R finite and let r P be finitely
generated. Then P is a finite module, hence the finiteness of End(gP).



5. (15 points) For every ring R, let [R, R] be the subgroup of the additive group (R, +) generated
by elements of the form zy — yx (z,y € R). Let R := R/[R, R] be the quotient group. Show that
if two rings R and S are Morita equivalent, then R ~ S as abelian groups.

Solution. By Morita theory for left modules, there exists a Morita context (R, gPs, sQr, S;, )
with a : P ®s Q = R as (R, R)-bimodules, and 8 : Q ®p P = S as (S, S)-bimodules. We shall
write a(p ® q) = pg and 3(¢ ® p) = gp as usual. From the maps

R<—P®sQ——S5/[S, 9]

pq P& qt ap = Ba®p)
one obtains ® : R — S characterized by pg — @p; note that the right hand side is well-defined only
after modulo [S, S]. For any » € R we have ®((rp)q) = grp = ®(p(qr)), hence ® induces a group

homomorphism ¢ : R — S characterized by pg — ¢p. Likewise, the maps

S<7;Q®RP

R/[R, R)

qp g pt @ =a(p®q)

yield a group homomorphism ¥ : S — R characterized by gp — pg. They are mutually inverse,
hence R ~ S.

6. (15 points) Describe the conjugacy classes ¢, ca, ... of the symmetric group &3 by prescribing
representatives. Construct all the irreducible representations Vi, Vs, ... of &3 over C and compile
the character table in the following format.

C1 C2

Vi xw(en) | xw(e2)

Vo XVa (Cl) XVs (62)

Solution. There are three conjugacy classes, say with representatives 1, (12), (123) (as cycles). Since
|&3| = 3! = 224 1+1, there are exactly three irreducible representations over C: V; := 1, V5 := sgn
and a 2-dimensional irreducible representation V3. As xy, (1) = dim V3 = 2, the character table
takes the form

1] (12) | (123)

T |1] 1 1

sgn | 1| —1 1
Vs |2

We offer two constructions for V3, both are overkill somehow.

(i) Since &3 is clearly supersolvable, the only subgroup of index 2 being the alternating subgroup
As = ((123)) ~ Z/3Z, we must have V3 ~ indgs (&) for some 1-dimensional representation
£: %3 — C*. If £ = 1 then indgg (&) contains 1 as a subrepresentation, hence reducible.
Thus the remaining candidates are £((123)) = e*27/3. They are conjugate under &3 thus
give the same induced representation V3. The character values can be calculated by the
induced character formula (Lecture 6, Proposition 4.1): v, ((12)) = 0 since (12) ¢ 3, whilst
XV3<(123>) — e?‘n’i/3 + e—27ri/3 - _1.



(ii) Another way is via Specht modules. The Young diagram corresponding to Vs is A =

Define the following tableaux of shape A:

213 113 112
t1:1 ) t2: ) t3: .

Then the associated tabloids

2 3 1 3 1 2

1 ’ {t2}: 9 ) {tB}: 3 :

{t1} =

are precisely all the tabloids of shape \; they form a basis for the permutation module M* ~
indgg(]l). A mental calculation of polytabloids leads to ey, = {t1} — {t2}, er, = {ta} — {t1},
er, = {ts} — {t1}. Hence the Specht module is

3
Vs~ SN = {Zc’{tZ} ic1t+ceo+eg = O}, M’\/S’\ ~ 1.

i=1
One may calculate xv; (-) = xazr(-) — 1 by the induced character formula applied to M?*.

In fact there is no need to calculate xy;, by hand. Since the columns of the character table satisfy
orthogonality relations (Lecture 5, Theorem 4.5), the missing entries xv,((12)) and xv, ((123)) are
immediately determined. All in all, we have

sgn | 1| —1 1
Vo |2] 0 -1

. (10 points) Let (V,7) be an absolutely irreducible representation of a finite group G over a field
F. Show that there exists a group homomorphism w; : Z(G) — F* such that 7(2)v = w,(2)v for
each v € V and z € Z(G). Here Z(G) denotes the center of G.

Solution. For every z € Z(G), the F-linear isomorphism 7(z) : V — V satisfies w(2)7(g) = 7(g)7(2)

for all g € G, therefore 7(z) € Homg(V, V) = F - id, as (V, 7) is absolutely irreducible. We obtain
the required group homomorphism w, : Z(G) — F*.

. (15 points) Let (V, o), (W, m) be irreducible representations of a finite group G over a field F'.
Assume there exists an F-bilinear mapping B : V x W — F such that (i) B is G-invariant in
the sense that Vg € G, B(o(g)-,7(g9)-) = B(+,-), and (ii) B is not identically zero. Show that V is
isomorphic to the contragredient WV of W as representations.

Solution. Define an F-linear map b: V — WV by sending v € V to B(v,-) € WV. It is nonzero
since B is not identically zero. It is a homomorphism between representations of G. Indeed,

b(a(g)v) = Blo(g)v,) = B(v,n(9)~") = #(g) (B(v, "))

for all g € G, where 7 denotes the contragredient representation of 7. Since V', W are irreducible,
b is an isomorphism of representations. Here we used the easy property W irreducible < WV
irreducible: the representations are finite-dimensional by assumption.



