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Preface

The present document comprises the homework for the course Commutative Ring Theory (Spring
2019) for the 11th Enhanced Program for Graduate Study organized by the Beijing International Cen-
ter for Mathematical Research. They are divided into 11 problem sets, corresponding roughly to the
materials in the lecture notes of the first-named author. Due to time constraints, they cover only a
very limited terrain of Commutative Algebra. Nevertheless, we hope this will be of some use to the
readers.

Most of the exercises herein are collected from existing resources such as the textbooks by Atiyah–
Macdonald, Eisenbud, Matsumura, etc., or the websites MathOverflow and Stacks Project. The au-
thors claim no originality of the exercises.

We are deeply grateful to the students of this course, coming from all over mainland China, for their
active participation and valuable feedback.

Last update: May 25, 2019

General conventions
• Unless otherwise specified, the rings are assumed to be commutative with unit 1. The ring of
integers, rational, real and complex numbers are denoted by the usual symbols ℤ,ℚ,ℝ and
ℂ respectively.

• An expression𝐴 ∶= 𝐵 means that𝐴 is defined to be𝐵 . Injections and surjections are indicated
by↪ and↠, respectively. The difference of sets is denoted as𝐴 ∖ 𝐵 , etc.

• The group of invertible elements in a ring 𝑅 is denoted by 𝑅×. The localization of 𝑅 with
respect to a multiplicative subset 𝑆 is denoted by 𝑅[𝑆−1], and the localization with respect
to a prime ideal 𝔭 by 𝑅𝔭. The space of prime ideals (resp. maximal ideals) of 𝑅 is denoted by
Spec(𝑅) (resp. MaxSpec(𝑅)) and we let 𝑉 (𝔞) ∶= {𝔭 ∈ Spec(𝑅) ∶ 𝔭 ⊃ 𝔞} for any ideal 𝔞. The
ideal generated by elements 𝑎, 𝑏 , … is denoted by (𝑎, 𝑏 , …).

• The field of fractions of an integral domain𝑅 is denoted by Frac(𝑅).
• The support of an𝑅-module𝑀 is denoted by Supp(𝑀), and the set of associated prime by
Ass(𝑀). The annihilator ideals are denoted by ann(⋯).

• For a ring𝑅, the𝑅-algebra of polynomials (resp. formal power series) is denoted by𝑅[𝑋, 𝑌 , …]
(resp.𝑅J𝑋, 𝑌 K) where 𝑋, 𝑌 , … stand for the indeterminates.
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Problem set 1

28 February

You may select 5 of the following problems as your homework.

Ring Theory Revisited

1. Let 𝑥 be a nilpotent element of ring A. Show that 1 + 𝑥 is a unit of 𝐴 . Deduce that the sum
of a nilpotent element and a unit is a unit.

2. Let 𝐴 be a ring and let 𝐴[𝑥] be the ring of polynomials in an an indeterminate 𝑥, with coeffi-
cients in𝐴 . Let 𝑓 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ 𝐴[𝑥]. Prove that:
(1) 𝑓 is a unit in𝐴[𝑥]⟺ 𝑎0 is a unit in𝐴 and 𝑎1, … , 𝑎𝑛 are nilpotent.
(Hint: If 𝑏0 +𝑏1𝑥 +⋯+𝑏𝑚𝑥𝑚 is the inverse of 𝑓 , prove by induction on 𝑟 that 𝑎𝑟 +1𝑛 𝑏𝑚−𝑟 = 0.
Hence show that 𝑎𝑛 is nilpotent, and then use Ex.1.)
(2) 𝑓 is nilpotent ⟺ 𝑎0 , 𝑎1, … , 𝑎𝑛 are nilpotent.
(3) 𝑓 is a zero-divisor ⟺ there exists 𝑎 ≠ 0 in𝐴 such that 𝑎𝑓 = 0.
(Hint: Choose a polynomial 𝑔 = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚 of least degree𝑚 such that 𝑓 𝑔 = 0.
Then 𝑎𝑛𝑏𝑚 = 0, hence 𝑎𝑛𝑔 = 0.)
(4) 𝑓 is said to be primitive if (𝑎0 , 𝑎1, … , 𝑎𝑛) = (1). Prove that if 𝑓 , 𝑔 ∈ 𝐴[𝑥], then 𝑓 𝑔 is
primitive ⟺ 𝑓 and 𝑔 are primitive.

3. Prove that a local ring contains no element 𝑒 ≠ 0, 1, such that 𝑒2 = 𝑒 .
Zariski Topology

4. For each 𝑓 ∈ 𝐴, let 𝑋𝑓 denote the complement of 𝑉 (𝑓 ) in 𝑋 = Spec(𝐴). The sets 𝑋𝑓 are
open. Show that they form a basis of open sets for the Zariski topology, and that

(1) 𝑋𝑓 ∩ 𝑋𝑔 = 𝑋𝑓 𝑔
(2) 𝑋𝑓 = ∅ ⟺ 𝑓 is nilpotent.

(3) 𝑋𝑓 = 𝑋 ⟺ 𝑓 is a unit.

Prime Avoidance

2



5. Here are two examples that show how the prime avoidance cannot be improved.

(1) Show that if 𝑘 = ℤ/(2) then the ideal (𝑥, 𝑦) ⊂ 𝑘[𝑥, 𝑦]/(𝑥, 𝑦)2 is the union of 3 properly
smaller ideals.

(2) Let 𝑘 be any field. In the ring 𝑘[𝑥, 𝑦]/ (𝑥𝑦, 𝑦2) , consider the ideals 𝐼1 = (𝑥), 𝐼2 = (𝑦),
and 𝐽 = (𝑥2, 𝑦) . Show that the homogeneous elements of 𝐽 are contained in 𝐼1 ∪ 𝐼2, but that
𝐽 ⊈ 𝐼1 and 𝐽 ⊈ 𝐼2 . Note that one of the 𝐼𝑗 is prime.

Localization of rings and modules

6. Let 𝑓 ∶ 𝐴 → 𝐵 be a homomorphism of rings and let 𝑆 be a multiplicatively closed subset of
𝐴. Let 𝑇 = 𝑓 (𝑆). Show that 𝐵[𝑆−1] and 𝐵[𝑇 −1] are isomorphic as𝐴[𝑆−1] -modules.

7. Let𝑀 be an𝐴 -module. Then the following are equivalent:

(1)𝑀 = 0.
(2)𝑀𝔭 = 0 for all prime ideals 𝔭 of𝐴.
(3)𝑀𝔪 = 0 for all maximal ideals 𝔪 of𝐴.

Nakayama’s lemma

8. Let 𝐴 be a ring, 𝔞 an ideal contained in the Jacobson radical ℜ of 𝐴, let𝑀 be an 𝐴 -module
and 𝑁 a finitely generated 𝐴 -module, and let 𝑢 ∶ 𝑀 → 𝑁 be a homomorphism. If the
induced homomorphism𝑀/𝔞𝑀 → 𝑁/𝔞𝑁 is surjective, then 𝑢 is surjective.
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Problem set 2

7 March

You may select 3 of the following problems as your homework.

Radicals

1. A ring 𝐴 is such that every ideal not contained in the nilradical (i.e. √0) contains a non-zero
idempotent (that is, an element 𝑒 such that 𝑒2 = 𝑒 ≠ 0).Prove that the nilradical and Jacobson
radical of𝐴 are equal.

Noetherian and Artinian rings

2. In a Noetherian ring𝐴, show that every ideal a contains a power of its radical.

3. Let 𝑀 be an 𝐴-module and let 𝑁1, 𝑁2 be submodules of 𝑀 . If 𝑀/𝑁1 and 𝑀/𝑁2 are
Noetherian, so is𝑀/(𝑁1 ∩ 𝑁2). Similarly with Artinian in place of Noetherian.

Support of a module

4. (1) Let𝐴 be a local ring,𝑀 and𝑁 finitely generated𝐴 -modules. Prove that if𝑀 ⊗𝐴𝑁 = 0,
then𝑀 = 0 or𝑁 = 0.
(Hint: Let𝔪be themaximal ideal,𝑘 = 𝐴/𝔪 the residuefield. Let𝑀𝑘 = 𝑘⊗𝐴𝑀 ≅𝑀/𝔪𝑀 ,
and similarly definition for𝑁𝑘 . ThenuseNakayama’s lemma, andnote that𝑀𝑘 , 𝑁𝑘 are vector
spaces.)

(2) Let 𝐴 be a ring,𝑀,𝑁 are finitely generated 𝐴-module. Prove that Supp (𝑀 ⊗𝐴 𝑁) =
Supp(𝑀) ∩ Supp(𝑁 )
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Problem set 3

14 March

You may select 4 of the following problems as your homework.

Support, Associated primes and Primary decompositions

1. Show that the support of theℤ-module𝑀 ∶= ⨁𝑛≥1ℤ/𝑛ℤ is not a closed subset of Spec(ℤ).
Show that its closure equals 𝑉 (annℤ(𝑀)).

2. Let 𝑝 be a prime number. Show that the support of theℤ-module∏∞
𝑎=1ℤ/𝑝𝑎ℤ is not equal

to the closure of⋃∞
𝑎=1 Supp (ℤ/𝑝𝑎ℤ).

3. Let𝑀 be an𝑅-module, which is “graded” in the following sense: we are given decompositions
of abelian groups𝑅 = ⨁∞

𝑎=0 𝑅𝑎 and𝑀 = ⨁∞
𝑏=0𝑀𝑏 , such that1 ∈ 𝑅0 and for all𝑎, 𝑏 ∈ ℤ≥0 ,

𝑅𝑎 ⋅ 𝑅𝑏 ⊂ 𝑅𝑎+𝑏 , 𝑅𝑎 ⋅ 𝑀𝑏 ⊂ 𝑀𝑎+𝑏 .

Suppose that𝑚 ∈ 𝑀 and 𝔭 ∶= ann𝑅(𝑚) is a prime ideal of𝑅.
(1) Show that 𝔭 = ⨁𝑎≥0(𝔭 ∩ 𝑅𝑎) .We say 𝔭 is a “homogeneous ideal”.

(2) Show that there exist some 𝑏 ≥ 0 and 𝑚′ ∈ 𝑀𝑏 such that 𝔭 = ann𝑅(𝑚′) .Thus 𝔭 is
actually the annihilator of some “homogeneous element”.

4. Let

𝐴 = (
1 1 0
0 1 0
0 0 2

)

Regard the ℂ-vector space ℂ3 as a ℂ[𝑇 ] -module via (∑𝑚
𝑗=0 𝑎𝑗𝑇 𝑗 ) 𝑣 ∶= ∑𝑚

𝑗=0 𝑎𝑗 (𝐴𝑗 𝑣).
What are the associated prime ideals of thisℂ[𝑇 ] -module?

5. Try to give a primary decomposition of the ideal 𝐼 = (𝑥3𝑦, 𝑥𝑦4) of the ring𝑅 = 𝑘[𝑥, 𝑦].
(Hint:If 𝐼 is amonomial ideal with a generator 𝑎𝑏 , where 𝑎 and 𝑏 are coprime, say 𝐼 = (𝑎𝑏)+
𝐽 , then 𝐼 = ((𝑎) + 𝐽 ) ∩ ((𝑏) + 𝐽 ).Applying this recursively gives a primary decomposition.)

5



Problem set 4

21 March

You may select 4 of the following problems as your homework.

Integral dependence, Nullstellensatz

1. Prove that the integral closure of𝑅 ∶= ℂ[𝑋, 𝑌 ]/(𝑌 2−𝑋 2−𝑋 3) in Frac(𝑅) equalsℂ[𝑡]with
𝑡 ∶= 𝑌̄ /𝑋̄ , where 𝑋̄ , 𝑌̄ denote the images of 𝑋, 𝑌 in𝑅.
(Hint: First, show that the homomorphism 𝜉 ∶ ℂ[𝑋 , 𝑌 ] → ℂ[𝑇 ] given by 𝑋 ↦ 𝑇 2 − 1
and 𝑌 ↦ 𝑇 3 − 𝑇 has kernel equal to (𝑌 2 − 𝑋 2 − 𝑋 3). Secondly, show that 𝑇 is in the field
of fractions of 𝑅 ≃ image(𝜉 ) ⊂ ℂ(𝑇 ), integral over𝑅, and argue thatℂ[𝑇 ] is the required
integral closure. Try to motivate the choice of 𝜉 .)

2. Consider a Noetherian ring𝑅with𝐾 ∶= Frac(𝑅). Show that 𝑥 ∈ 𝐾 is integral over𝑅 if and
only if there exists 𝑢 ∈ 𝑅 such that 𝑢 ≠ 0 and 𝑢𝑥𝑛 ∈ 𝑅 for all 𝑛.
(Hint: When this condition holds,𝑅[𝑥] is an𝑅-submodule of 𝑢−1𝑅.)

3. Let𝑅 = ℚ[𝑋1, 𝑋2, …] (finite or infinitelymany variables). Show that nil(𝑅) = rad(𝑅) = {0}.
(Hint: To show rad(𝑅) = {0}, produce a surjective homomorphism 𝜑𝑓 ∶ 𝑅 → ℚ such that
𝜑𝑓 (𝑓 ) ≠ 0, for any given nonzero 𝑓 ∈ 𝑅.)

4. Let𝑅 = ℚ[𝑋1, 𝑋2, …] (infinitely many variables). Show that𝑅 is not a Jacobson ring.

(Hint: Exhibit a surjective homomorphism 𝜓 ∶ 𝑅 → 𝑅′ such that 𝑅′ is an integral domain
with uniquemaximal ideal≠ {0}. Such𝑅′ can be obtained by localizingℚ[𝑋] at some prime
ideal.)

5. (1) Let𝐴 be a subring of an integral domain𝐵 , and let𝐶 be the integral closure of𝐴 in𝐵. Let
𝑓 , 𝑔 be monic polynomials in 𝐵[𝑥] such that 𝑓 𝑔 ∈ 𝐶[𝑥] . Then 𝑓 , 𝑔 are in 𝐶[𝑥].
(Hint: Take a field containing 𝐵 in which the polynomials 𝑓 , 𝑔 split into linear factors, prove
that the coefficients of 𝑓 and 𝑔 are integral over 𝐶.)
(2) Prove the same result without assuming that 𝐵 (or𝐴) is an integral domain.
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6. Let 𝑓 ∶ 𝐴 → 𝐵 be an injective map, and 𝐵 integral over𝐴.Assume that neither𝐴 nor 𝐵 have
zero divisors.

(1) Show that if𝐴 is a field, then so is 𝐵 .

(2) Deduce that a field 𝑘 is algebraically closed (i.e., every polynomial has a root) if and only if
for every finite field extension 𝑘 ⊂ 𝑘′ i.e., 𝑘′ is f.d. as a 𝑘-vector space, we have 𝑘 = 𝑘′.
(3) Show that if 𝐵 is a field, then so is𝐴 .
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Problem set 5

28 March

Flatness

1. For a field 𝑘 , show that 𝑘J𝑡K[𝑌 , 𝑍]/(𝑌 𝑍 − 𝑡) is flat over 𝑘J𝑡K.
2. Let𝑁 ′, 𝑁 ,𝑁 ′′ be 𝐴-modules, and 0→ 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be an exact sequence, with
𝑁 ′′ flat. Prove that𝑁 ′ is flat ⟺ 𝑁 is flat.

(Hint: Use the Tor exact sequence, and note that for any 𝐴-module𝑀 , Tor𝑛(𝑀,𝑁 ′′) =
Tor𝑛(𝑁 ′′,𝑀) = 0.Then use 5-lemma.)

3. A ring𝐴 is absolutely flat if every𝐴 -module is flat. Prove that the following are equivalent:

(1)𝐴 is absolutely flat.

(2) Every principal ideal is idempotent.

(3) Every finitely generated ideal is a direct summand of𝐴.
(Hint: For (1)⟹ (2), let 𝑥 ∈ 𝐴, consider the following diagram:

(𝑥) ⊗ 𝐴 𝐴/(𝑥)

𝐴 𝐴/(𝑥)

For (2)⟹ (3), prove that every finitely generated ideal is principal.)

4. Prove the following properties of absolutely flat:

(1) Every homomorphic image of an absolutely flat ring is absolutely flat.

(2) If a local ring is absolutely flat, then it is a field.

(3) If a ring𝐴 is absolutely flat, then every non-unit in𝐴 is a zero-divisor.
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Problem set 6

4 April

Going-up and Going-down

1. Let 𝑓 ∶ 𝐴 → 𝐵 be an integral homomorphism of rings, i.e. 𝐵 is integral over its subring 𝑓 (𝐴).
Show that 𝑓 # ∶ Spec(𝐵) → Spec(𝐴) is a closedmapping, i.e. that it maps closed sets to closed
sets.

(Hint: This is a geometrical equivalent of the first part of Krull–Cohen–Seidenberg theorem.
)

2. Let𝐴 ⊂ 𝐵 be an extension of rings, making 𝐵 integral over𝐴, and let 𝔭 be a prime ideal of𝐴.
Suppose there is a unique prime ideal 𝔮 of 𝐵 with 𝔮 ∩ 𝐴 = 𝔭. Show that

(a) 𝔮𝐵𝔭 is the unique maximal ideal of 𝐵𝔭 ∶= 𝐵[(𝐴 ∖ 𝔭)−1];
(b) 𝐵𝔮 = 𝐵𝔭;

(c) 𝐵𝔮 is integral over𝐴𝔭.

(Hint: Observe that 𝐵𝔭 is integral over 𝐴𝔭. For (a), show that 𝔮𝐵𝔭 is the unique prime of 𝐵𝔭
over 𝔭𝐴𝔭, then apply the local case of Krull–Cohen–Seidenberg Theorem. For (b) and (c),
show that every 𝑦 ∈ 𝐵 ∖ 𝔮 becomes invertible in 𝐵𝔭 by using the integrality over𝐴.)

3. Let the integral extension𝐴 ⊂ 𝐵 and the prime ideal 𝔭 be as above. Suppose that𝐴 is a domain
and 𝔮, 𝔮′ are distinct prime ideals of 𝐵 , both mapping to 𝔭 under Spec(𝐵) → Spec(𝐴). Show
that 𝐵𝔮 is not integral over𝐴𝔭.

(Hint: Take 𝑦 ∈ 𝔮′ ∖ 𝔮. Claim: 𝑦−1 ∈ 𝐵𝔮 is not integral over𝐴𝔭. Otherwise we would have

𝑎0𝑦𝑛 + 𝑎1𝑦𝑛−1 + ⋯ + 𝑎𝑛−1𝑦 = −1

for some 𝑎0 , … 𝑎𝑛−1 ∈ 𝐴𝔭 with 𝑎0 ≠ 0. Clean denominators of 𝑎0 , … , 𝑎𝑛−1 to derive a contra-
diction.)
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Problem set 7

11 April

Graded rings and modules, Filtrations

1. Many basic operations on ideals, when applied to homogeneous ideals inℤ-graded rings, lead
to homogeneous ideals. Let 𝐼 be a homogeneous ideal in aℤ-graded ring𝑅. Show that:

(1) The radical of 𝐼 is homogeneous, that is, the radical of 𝐼 is generated by all the homogeneous
elements 𝑓 such that 𝑓 𝑛 ∈ 𝐼 for some 𝑛.
(2) If 𝐼 and 𝐽 are homogeneous ideals of𝑅, then (𝐼 ∶ 𝐽 ) ∶= {𝑓 ∈ 𝑅|𝑓 𝐽 ⊂ 𝐼 } is a homoge-
neous ideal.

(3) Suppose that for all 𝑓 , 𝑔 homogeneous elements of𝑅 such that 𝑓 𝑔 ∈ 𝐼 , one of 𝑓 and 𝑔 is
in 𝐼 . Show that 𝐼 is prime.

2. Suppose𝑅 is aℤ-graded ring and 0 ≠ 𝑓 ∈ 𝑅1.
(1) Show that𝑅[𝑓 −1] is again aℤ-graded ring.
(2) Let 𝑆 = 𝑅[𝑓 −1]0 , show that 𝑆 ≅ 𝑅/(𝑓 − 1), and𝑅[𝑓 −1] ≅ 𝑆[𝑥, 𝑥−1], where 𝑥 is a new
variable.

3. Show that if𝑅 is a graded ring with no nonzero homogeneous prime ideals, then𝑅0 is a field
and either𝑅 = 𝑅0 or𝑅 = 𝑅0[𝑥, 𝑥−1].

4. Taking the associated graded ring can also simplify some features of the structure of 𝑅. For
example, let 𝑘 be a field, and let𝑅 = 𝑘[𝑥1, … , 𝑥𝑟 ] ⊂ 𝑅1 = 𝑘J𝑥1, … , 𝑥𝑟 K be the rings of poly-
nomials in 𝑟 variables and formal power series in 𝑟 variables over 𝑘, and write 𝐼 = (𝑥1, … , 𝑥𝑟 )
for the ideal generated by the variables in either ring. Show that gr𝐼 𝑅 = gr𝐼 𝑅1.
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Problem set 8

18 April

You may select 3 of the following problems as your homework.

Completions

1. Let 𝐴 be a local ring, m its maximal ideal. Assume that 𝐴 is m -adically complete. For any
polynomial 𝑓 (𝑥) ∈ 𝐴[𝑥], let 𝑓 (𝑥) ∈ (𝐴/m)[𝑥] denote its reductionmod. m. ProveHensel’s
lemma: if 𝑓 (𝑥) ismonic of degree𝑛 and if there exist coprimemonicpolynomials𝑔(𝑥), ℎ(𝑥) ∈
(𝐴/m)[𝑥]of degrees 𝑟 , 𝑛−𝑟 with 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥), thenwe can lift 𝑔(𝑥), ℎ(𝑥)back tomonic
polynomials 𝑔(𝑥), ℎ(𝑥) ∈ 𝐴[𝑥]such that 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥).
(Hint:Assume inductively that we have constructed 𝑔𝑘(𝑥), ℎ𝑘(𝑥) ∈ 𝐴[𝑥] such that

𝑔𝑘(𝑥)ℎ𝑘(𝑥) − 𝑓 (𝑥) ∈ 𝔪𝑘𝐴[𝑥].

Then use the fact that since 𝑔(𝑥) and ℎ(𝑥) are coprimewe can find 𝑎𝑝(𝑥), 𝑏 𝑝(𝑥), of degrees⩽
𝑛−𝑟 , 𝑟 respectively, such that𝑥𝑝 = 𝑎𝑝(𝑥)𝑔𝑘(𝑥)+𝑏 𝑝(𝑥)ℎ𝑘(𝑥),where𝑝 is any integer such that
1⩽ 𝑝 ⩽ 𝑛. Finally, use the completeness of𝐴 to show that the sequences 𝑔𝑘(𝑥), ℎ𝑘(𝑥)converge
to the required 𝑔(𝑥), ℎ(𝑥).)

2. (1) With the notation of Exercise 1, deduce fromHensel’s lemma that if 𝑓 (𝑥) has a simple root
𝛼 ∈ 𝐴/m, then 𝑓 (𝑥) has a simple root 𝑎 ∈ 𝐴 such that 𝛼 = 𝑎 mod m.
(2) Show that 2 is a square in the ring of 7 -adic integers.

(3)Let 𝑓 (𝑥, 𝑦) ∈ 𝑘[𝑥, 𝑦],where𝑘 is a field, and assume that𝑓 (0, 𝑦)has 𝑦 = 𝑎0 as a simple root.
Prove that there exists a formal power series 𝑦(𝑥) = ∑∞

𝑛=0 𝑎𝑛𝑥𝑛 such that 𝑓 (𝑥, 𝑦(𝑥)) = 0.This
gives the ”analytic branch” of the curve 𝑓 = 0 through the point (0, 𝑎0).

3. Let𝐴 be a Noetherian ring, 𝔞 an ideal in𝐴, and 𝐴̂ the 𝔞-adic completion. For any 𝑥 ∈ 𝐴, let 𝑥̂
be the image of 𝑥 in 𝐴̂ . Show that 𝑥 not a zero-divisor in 𝐴 implies 𝑥̂ not a zero-divisor in 𝐴̂.
Does this imply that if𝐴 is an integral domain then 𝐴̂ is an integral domain?

(Hint: For a counter-example, consider𝑅 = 𝑘[𝑥, 𝑦] and

𝔪 = (𝑥, 𝑦), 𝐴 = 𝑘[𝑥, 𝑦]/(𝑦2 − 𝑥2 − 𝑥3).

11



Let 𝑓 ∈ 𝑘J𝑥, 𝑦K be such that 𝑓 2 = 1 + 𝑥 , such a power series can be obtained𝑓 = 1 + 1
2𝑥 −1

8𝑥2 + ⋯ ∈ 𝑘J𝑥K ⊂ 𝑘J𝑥, 𝑦K))
4. Let𝕜 be a field and consider the quotient of infinite polynomial ring

𝑅 ∶= 𝕜[𝑋, 𝑍, 𝑌1, 𝑌2, 𝑌3 , …]
(𝑋 − 𝑍𝑌1, 𝑋 − 𝑍2𝑌2, 𝑋 − 𝑍3𝑌3 , …)

.

Denote by𝑍 the image of𝑍 in𝑅. Show that the ideal 𝐼 ∶= (𝑍) of𝑅 satisfies⋂𝑛≥1 𝐼 𝑛 ≠ {0}.
Why is this consistent with Krull’s intersection theorem?

12



Problem set 9

25 April

The materials below are taken from the Stacks Project.

Mittag-Leffler systems and Completions for non-Noetherian rings

1. Consider an inverse system of sets ⋯ ← 𝐴𝑛
𝜑𝑛+1← 𝐴𝑛+1 ← ⋯ (where 𝑛 = 1, 2, …). For each

𝑗 > 𝑖 , let 𝜑𝑗 ,𝑖 ∶ 𝐴𝑗 → 𝐴𝑖 be the composition of 𝜑𝑗 , … , 𝜑𝑖 . We say that Mittag-Leffler
conditions holds for (𝐴𝑛, 𝜑𝑛)𝑛≥1 if for each 𝑖 , we have

𝜑𝑘,𝑖 (𝐴𝑘) = 𝜑𝑗 ,𝑖 (𝐴𝑗 ) whenever 𝑗 , 𝑘 ≫ 𝑖.
Show that if (𝐴𝑛, 𝜑𝑛)𝑛 is Mittag-Leffler and𝐴𝑛 ≠ ∅ for each 𝑛, then the limit

lim←−𝑛
𝐴𝑛 ∶= {(𝑎𝑛)𝑛 ∈ ∏

𝑛
𝐴𝑛 ∶ ∀𝑛, 𝜑𝑛+1(𝑎𝑛+1) = 𝑎𝑛}

is nonempty as well.

2. Suppose we are given an inverse system of short exact sequences of abelian groups, i.e. a com-
mutative diagram

⋮ ⋮ ⋮

0 𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝐴𝑛+1 𝐵𝑛+1 𝐶𝑛+1 0

⋮ ⋮ ⋮

𝑓𝑛 𝑔𝑛

𝑓𝑛+1

𝜑𝑛+1

𝑔𝑛+1

𝜓𝑛+1 𝜉𝑛+1

with exact rows, where 𝑛 = 1, 2, …. Show that if (𝐴𝑛, 𝜑𝑛)𝑛 is Mittag-Leffler, then

0 → lim←−𝐴𝑛
lim 𝑓𝑛−−−→ lim←−𝐵𝑛

lim 𝑔𝑛−−−→ lim←−𝐶𝑛 → 0
is exact. You only have to show the surjectivity of lim 𝑔𝑛.
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3. Let 𝑅 be a ring (not necessarily Noetherian), 𝐼 be a proper ideal, and 𝜑 ∶ 𝑀 → 𝑁 be a
homomorphism of𝑅-modules. Prove the following statements.

(a) If𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 is surjective, then so is 𝜑̂ ∶ 𝑀̂ → 𝑁̂ . Here 𝑀̂ = lim←−𝑛≥1
𝑀/𝐼 𝑛𝑀

stands for the 𝐼 -adic completion.

(Hint: First, show𝑀/𝐼 𝑛𝑀 → 𝑁/𝐼 𝑛𝑁 is surjective. Next, set 𝐾𝑛 = Ker[𝑀 →
𝑁/𝐼 𝑛𝑁] to get exact sequences

0 → 𝐾𝑛/𝐼 𝑛𝑀 →𝑀/𝐼 𝑛𝑀 → 𝑁/𝐼 𝑛𝑁 → 0,

then try to establish the surjectivity of 𝐾𝑛+1/𝐼 𝑛+1𝑀 → 𝐾𝑛/𝐼 𝑛𝑀 in order to apply
Mittag-Leffler.)

(b) If 0 → 𝐾 → 𝑀 → 𝑁 → 0 is an exact sequence of 𝑅-modules and 𝑁 is flat, then
0 → 𝐾̂ → 𝑀̂ → 𝑁̂ → 0 is exact.
(Hint: Tensor by𝑅/𝐼 𝑛 to obtain an inverse system of short exact sequences, and apply
Mittag-Leffler.)

(c) If𝑀 is finitely generated, then the natural homomorphism𝑀 ⊗𝑅 𝑅̂ → 𝑀̂ given by
𝑚 ⊗ (𝑟𝑛)∞𝑛=1 ↦ (𝑟𝑛𝑚)∞𝑛=1 is surjective.

(Hint: Show that if𝑅⊕𝑁 →𝑀 is a surjective homomorphism, then so is𝑅⊕𝑁 → 𝑀̂ .)

4. Suppose 𝐼 is finitely generated. Let𝑀 be an𝑅-module. Prove that

𝐼 𝑛𝑀̂ = Ker[𝑀̂ → 𝑀/𝐼 𝑛𝑀] = 𝐼 𝑛𝑀

for all 𝑛 ∈ ℤ≥1, and 𝑀̂ is 𝐼 -adically complete as an𝑅-module.

(Hint: Fix 𝑛 and take generators 𝑓1, … , 𝑓𝑟 of 𝐼 𝑛. This yields a surjective homomorphism of
𝑅-modules (𝑓1, … , 𝑓𝑟 ) ∶ 𝑀⊕𝑟 → 𝐼 𝑛𝑀 ⊂ 𝑀 . Pass to completions and show that

(𝑓1, … , 𝑓𝑟 ) ∶ 𝑀̂⊕𝑟 → 𝐼 𝑛𝑀 = lim←−𝑚≥𝑛
𝐼 𝑛𝑀
𝐼𝑚𝑀 ≃ Ker[𝑀̂ → 𝑀/𝐼 𝑛𝑀] ⊂ 𝑀̂,

which is surjective by the previous exercise. Identify the image of (𝑓1, … , 𝑓𝑟 ) ∶ 𝑀̂⊕𝑟 → 𝑀̂ to
infer that 𝑀̂/𝐼 𝑛𝑀̂ ≃ 𝑀/𝐼 𝑛𝑀 .)
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Problem set 10

9 May

Hilbert series

1. Let𝕜 be a field and𝑅 = 𝕜[𝑋0 , … , 𝑋𝑛], graded by total degree. Consider the graded𝑅-module
𝑆 = 𝑅/(𝑓 ) where 𝑓 is a homogeneous polynomial of total degree 𝑑 ≥ 1. Show that when
𝑚 ≥ 𝑑 ,

𝜒(𝑆 ,𝑚) ∶= dim𝕜 𝑆𝑚 = (𝑚 + 𝑛
𝑛 ) − (𝑚 + 𝑛 − 𝑑

𝑛 ).

2. Let𝑅 = ⨁𝑛 𝑅𝑛 be aℤ≥0 -graded ring, finitely generated over𝑅0 . Assume𝑅0 is Artinian (for
example, a field) and let𝑀 = ⨁𝑛𝑀𝑛 be a finitely generated ℤ≥0 -graded𝑅-module. Define
theHilbert series in the variable 𝑇 as

𝐻𝑀 (𝑇 ) ∶= ∑
𝑚≥0

𝜒(𝑀,𝑚)𝑇 𝑚 ∈ ℤ[[𝑇 ]]

where 𝜒(𝑀,𝑚) denotes the length of the𝑅0 -module𝑀𝑚 , as usual. In what follows, graded
means graded byℤ≥0 .

(a) Show that if 0 → 𝑀 ′ → 𝑀 → 𝑀 ″ → 0 is a short exact sequence of graded 𝑅-
modules, then𝐻𝑀 (𝑇 ) = 𝐻𝑀 ′(𝑇 ) + 𝐻𝑀 ″(𝑇 ).

(b) Relate𝐻𝑀 (𝑇 ) and𝐻𝑀(𝑘)(𝑇 ) for arbitrary 𝑘 ∈ ℤ, where𝑀(𝑘)𝑑 ∶= 𝑀𝑑+𝑘 .

(c) Suppose that𝑅 is generated as an𝑅0 -algebra by homogeneous elements 𝑥1, … , 𝑥𝑛 with
𝑑𝑖 ∶= deg 𝑥𝑖 ≥ 1. Show that there exists𝑄 ∈ ℚ[𝑇 ] such that

𝐻𝑀 (𝑇 ) =
𝑄(𝑇 )

(1 − 𝑡𝑑1) ⋯ (1 − 𝑡𝑎𝑛)

as elements ofℚ[[𝑇 ]].
(Hint: you may imitate the arguments for the quasi-polynomiality of 𝜒(𝑀, 𝑛).)

(d) What can be said about theℤ𝑚
≥0 -graded case, for general𝑚?
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Problem set 11

16 May

Dimension theory

1. Let ℤ3 be the 3-adic completion of the ring ℤ, so that ℤ ↪ ℤ3 naturally. Evaluate 1 + 3 +
32 + 33 + ⋯ inℤ3 .

2. Let𝑅 be a Noetherian local ring. Suppose that there exists a principal prime ideal 𝔭 in𝑅 such
that ht(𝔭) ≥ 1. Prove that𝑅 is an integral domain.
(Hint: Below is one possible approach. Suppose 𝔭 = (𝑥) for some 𝑥 ∈ 𝑅. Let 𝔮 ⊂ 𝔭 be a
minimal prime in𝑅. Argue that (i) 𝑥 ∉ 𝔮, (ii) 𝔮 = 𝑥𝔮, and finally (iii) 𝔮 = {0}.)

3. Let 𝕜 be a field and 𝑅 = 𝕜J𝑋 K × 𝕜J𝑋 K. Prove that 𝑅 is a Noetherian semi-local ring, 𝑅
contains a principal prime ideal of height 1, but𝑅 is not an integral domain.
(Hint: It is known that𝕜J𝑋 K isNoetherian localwithmaximal ideal (𝑋). Argue that the ideals
in𝕜J𝑋 K × 𝕜J𝑋 K take the form 𝐼 × 𝐽 where 𝐼 , 𝐽 are ideals in𝕜J𝑋 K. Show that (𝑋) × 𝕜J𝑋 K
and𝕜J𝑋 K × (𝑋) are the only maximal ideals, and both are of height 1.)
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Final exam of Commutative Ring Theory
The Enhanced Program for Graduate Study, BICMR / PKU

June 14, 2019

The rings are assumed to be commutative and nonzero, but not necessarily Noetherian. We say that
a ring homomorphism 𝜌 ∶ 𝐴 → 𝐵 is faithful if for all nonzero𝐴-module𝑀 , we have𝑀⊗

𝐴
𝐵 ≠ {0}.

1. (20 points) Show that the polynomial algebraℚ[𝑋1, 𝑋2, 𝑋3 , …] in infinitely many variables
has infinite Krull dimension.

Solution: Consider the prime chain (𝑋1) ⊊ (𝑋1, 𝑋2) ⊊ ⋯.
2. (15 points) Let 𝜌 ∶ 𝐴 → 𝐵 be a faithful homomorphism of rings and let 𝑢 ∶ 𝑀 → 𝑁 be a

homomorphism of𝐴-modules. Prove that if 𝑢 ⊗ id𝐵 ∶ 𝑀 ⊗
𝐴
𝐵 → 𝑁 ⊗

𝐴
𝐵 is surjective, then

𝑢 ∶ 𝑀 → 𝑁 is surjective as well.

Solution: Recall that coker(𝑢 ⊗ id𝐵) = coker(𝑢) ⊗
𝐴
𝐵 .

In what follows, we fix a ring𝐴 and an element 𝑓 ∈ 𝐴 which is not a zero-divisor. Denote by𝐴 the
(𝑓 )-adic completion of𝐴. We identify 𝑓 with its image in𝐴 andwrite𝐴𝑓 ∶= 𝐴[𝑓 −1],𝐴𝑓 ∶= 𝐴[𝑓 −1]
for the localizations with respect to the multiplicative subsets generated by 𝑓 . More generally, we
write𝑀𝑓 ∶= 𝑀[𝑓 −1] for any module𝑀 over 𝐴 or 𝐴. Note that𝑀 ∼→ 𝑀𝑓 if 𝑓 ∶ 𝑀 → 𝑀 is an
automorphism.

3. (20 points) Show that 𝑓 is not a zero divisor for𝐴.
Solution: Let 𝑎̂ = (𝑎𝑛)𝑛≥1 ∈ lim←−𝑛≥1 𝐴/(𝑓

𝑛). Then 𝑓 𝑎̂ = 0 is equivalent to 𝑎𝑛+1 ∈ (𝑓 𝑛) for
all 𝑛 ≥ 1. This implies 𝑎𝑛 = 0 for all 𝑛 ≥ 1, since 𝑎𝑛 = 𝑎𝑛+1 mod 𝑓 𝑛.

4. (15 points) Let𝑀 be an 𝐴-module such that every element 𝑥 ∈ 𝑀 is annihilated by some
power of 𝑓 . Show that

(i) when 𝑓 𝑛𝑀 = {0} for some 𝑛 ≥ 1, the canonical homomorphism𝑀 →𝑀 ⊗
𝐴
𝐴 given

by 𝑥 ↦ 𝑥 ⊗ 1 is bijective;
(ii) same as (i), but without assuming 𝑓 𝑛𝑀 = {0};
(iii) the “diagonal” homomorphism 𝜌 ∶ 𝐴 → 𝐴𝑓 × 𝐴 is faithful.

You may use the easy fact that𝐴/𝑓 𝑛𝐴 ≃ 𝐴/(𝑓 𝑛) (an earlier homework).

Solution: Consider (i). We have

𝑀 ≃𝑀 ⊗
𝐴

𝐴
(𝑓 𝑛)

∼→𝑀 ⊗
𝐴

𝐴
𝑓 𝑛𝐴

≃ 𝑀 ⊗
𝐴
𝐴,

whose composite is exactly𝑀 →𝑀 ⊗
𝐴
𝐴. For (ii), write

𝑀 = ⋃
𝑛≥1

ker [𝑓 𝑛 ∶ 𝑀 → 𝑀]
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and commute lim−→ past⊗. As for (iii), note that our condition amounts to𝑀𝑓 = {0}.

5. (20 points) Let 𝐿 be an 𝐴-module for which 𝑓 is not a zero-divisor, thus 𝐿 can be viewed as
a submodule of 𝐿𝑓 . Prove that

(i) Tor𝐴1 (𝐴, 𝐿/𝑓 𝑛𝐿) is zero for all 𝑛 ≥ 1, in particular 𝑓 is not a zero divisor for 𝐿 ⊗
𝐴
𝐴;

(ii) Tor𝐴1 (𝐴, 𝐿𝑓 /𝐿) is zero.
You may make free use of the long exact sequence for Tor:

⋯ → Tor𝐴𝑖+1(𝑋 , 𝑌 ″) → Tor𝐴𝑖 (𝑋 , 𝑌 ′) → Tor𝐴𝑖 (𝑋 , 𝑌 ) → Tor𝐴𝑖 (𝑋 , 𝑌 ″) → ⋯

where 0 → 𝑌 ′ → 𝑌 → 𝑌 ″ → 0 is exact, as well as the fact that Tor commutes with direct
limits and direct sums in each variable.

Solution: In view of

𝐿𝑓 /𝐿 ≃ lim−→𝑛≥1
1
𝑓 𝑛𝐿/𝐿,

1
𝑓 𝑛𝐿/𝐿 ≃ 𝐿/𝑓

𝑛𝐿,

it suffices to prove (i). The case 𝐿 = 𝐴 amounts to the result that 𝑓 is not a zero divisor in 𝐴,
since 𝐴/𝑓 𝑛𝐴 ≃ 𝐴/(𝑓 𝑛). For general 𝐿, one chooses a presentation of the 𝐴/(𝑓 𝑛)-module
𝐿/𝑓 𝑛𝐿: there exists a set 𝐼 and an exact sequence of𝐴-modules

0 → 𝑀 → (𝐴/(𝑓 𝑛))⊕𝐼 → 𝐿
𝑓 𝑛𝐿 → 0.

Then, by the previous result,

Tor𝐴1 (𝐴, 𝐿/𝑓 𝑛𝐿) ≃ ker [𝑀 ⊗
𝐴
𝐴 → (𝐴/(𝑓 𝑛))⊕𝐼 ⊗

𝐴
𝐴 ]

≃ ker [𝑀 → (𝐴/(𝑓 𝑛))⊕𝐼 ] = {0}.

6. (10 points) Below is a weak version of the celebrated Beauville–Laszlo theorem. Consider the
following data

• an𝐴𝑓 -module𝐾 ,
• an𝐴-module 𝐿 for which 𝑓 is not a zero-divisor,
• an isomorphism 𝜑 ∶ 𝐾 ⊗𝐴 𝐴 ∼→ 𝐿𝑓 of𝐴𝑓 -modules.

Show that there exists an 𝐴-module𝑀 , for which 𝑓 is not a zero-divisor, together with iso-
morphisms

𝛼 ∶ 𝑀𝑓
∼→ 𝐾, 𝛽 ∶ 𝑀 ⊗

𝐴
𝐴 ∼→ 𝐿,

such that 𝜑 equals the composite of

𝐾 ⊗
𝐴
𝐴 𝛼−1⊗id 𝑀𝑓 ⊗𝐴 𝐴

𝛽[𝑓 −1]
𝐿𝑓 .
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Solution: Given (𝐾, 𝐿, 𝜑), let us begin by showing the surjectivity of the composed homo-
morphism

𝜑 ∶ 𝐾 → 𝐾 ⊗
𝐴
𝐴

𝜑
𝐿𝑓 → 𝐿𝑓 /𝐿.

Since𝐴 → 𝐴𝑓 ×𝐴 is faithful and (𝐿𝑓 /𝐿)𝑓 = 0, this reduces to the surjectivity of the𝐴-linear
map

𝐾 ⊗
𝐴
𝐴 → (𝐿𝑓 /𝐿) ⊗𝐴 𝐴 ≃ 𝐿𝑓 /𝐿,

which agrees with 𝜑 when pulled-back to𝐾 , thus it equals𝐾 ⊗
𝐴
𝐴 ∼

𝜑
𝐿𝑓 ↠ 𝐿𝑓 /𝐿. Hence

𝜑 is surjective.

Next, put𝑀 ∶= ker(𝜑) into the short exact sequence

0 → 𝑀 𝑖 𝐾
𝜑
𝐿𝑓 /𝐿 → 0.

Thus 𝛼 ∶= 𝑖[𝑓 −1] ∶ 𝑀𝑓 → 𝐾𝑓 ≃ 𝐾 is an isomorphism since 𝐾 is already an 𝐴𝑓 -module.
Also, 𝑓 is not a zero-divisor for𝑀 . Using Tor𝐴1 (𝐴, 𝐿𝑓 /𝐿) = 0, we conclude that the com-
mutative diagram

0 𝑀 ⊗
𝐴
𝐴 𝐾 ⊗

𝐴
𝐴 𝐿𝑓 /𝐿 0

0 𝐿 𝐿𝑓 𝐿𝑓 /𝐿 0

𝑖⊗id

𝜑∼

has exact rows. We obtain𝛽 ∶= 𝜑 ∘(𝑖 ⊗ id) ∶ 𝑀 ⊗
𝐴
𝐴 ∼→ 𝐿. Since (𝐿𝑓 /𝐿)𝑓 = 0, by localizing

the diagram above with respect to 𝑓 we obtain

𝑀𝑓 ⊗𝐴 𝐴 𝐾 ⊗
𝐴
𝐴

(𝑀 ⊗
𝐴
𝐴)𝑓 (𝐾 ⊗

𝐴
𝐴)𝑓

𝐿𝑓 𝐿𝑓

𝛼⊗id

𝛽[𝑓 −1] 𝜑

id

in which all arrows are invertible. It follows that 𝛽[𝑓 −1] ∘ (𝛼−1 ⊗ id) = 𝜑 .
Note. Our approach to Beauville–Laszlo theorem follows the original paper

A. Beauville, Y. Laszlo, Un lemme de descente. (French. Abridged English version). C. R.
Acad. Sci., Paris, Sér. I 320, No. 3, 335-340 (1995).

A more general version can be found on Stacks Project, 15.81.
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